[en] Nowadays, the use of functionalised surface-enhanced Raman scattering (SERS) substrates has become very common. These surface modifying agents notably act as Raman reporters, as sensors of biological processes (pH, redox probes) or to increase the sensitivity and/or the specificity of SERS detections.
However, the effects of the functionalisation agents are deeply examined in very few studies, even though they can affect the aggregation behaviour of the SERS substrate. Moreover, depending on their concentration and on the pH, their spectral signature can be modified and they can even degrade if stored inappropriately.
In this context, this paper aims at emphasising the importance of the different aspects previously listed in the selection of a functionalisation agent. Pyridine derivatives were picked out to highlight these parameters, as some of these compounds are commonly used to be grafted onto SERS substrates. Two widespread syntheses of nanoparticles were selected as SERS substrates: citrate-reduced gold and silver nanoparticles. The surface of the nanoparticles was functionalised with several pyridine derivatives at different concentrations and in several solvents. It was observed that the molecules under study had a concentration-dependent effect on nanoparticle aggregation. A stability study was furthermore conducted in order to determine the best preservation conditions of the grafting solutions.
In conclusion, this paper shines a light on the relevance of the investigation of the too-often neglected behaviour of the surface modifying agents. Before their application in SERS analyses, parameters such as the label concentration should therefore be included in an experimental design to optimise the sample preparation.
Research Center/Unit :
CIRM - Centre Interdisciplinaire de Recherche sur le Médicament - ULiège
Disciplines :
Chemistry Pharmacy, pharmacology & toxicology
Author, co-author :
Dumont, Elodie ; Université de Liège - ULiège > Département de pharmacie > Chimie analytique
De Bleye, Charlotte ; Université de Liège - ULiège > Département de pharmacie > Département de pharmacie
Haouchine, Merzouk
Coic, Laureen ; Université de Liège - ULiège > Département de pharmacie > Chimie analytique
Sacre, Pierre-Yves ; Université de Liège - ULiège > Département de pharmacie > Chimie analytique
Hubert, Philippe ; Université de Liège - ULiège > Département de pharmacie > Chimie analytique
Ziemons, Eric ; Université de Liège - ULiège > Département de pharmacie > Chimie analytique
Language :
English
Title :
Effect of the functionalisation agent on the surface-enhanced Raman scattering (SERS) spectrum: Case study of pyridine derivatives
Publication date :
05 June 2020
Journal title :
Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy
ISSN :
1386-1425
Publisher :
Elsevier, United Kingdom
Volume :
233
Pages :
118180
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique FEDER - Fonds Européen de Développement Régional
Cailletaud, J., De Bleye, C., Dumont, E., Sacré, P.-Y., Netchacovitch, L., Gut, Y., Boiret, M., Ginot, Y.-M., Hubert, Ph., Ziemons, E., Critical review of surface-enhanced Raman spectroscopy applications in the pharmaceutical field. J. Pharm. Biomed. Anal. 147 (2018), 458–472, 10.1016/j.jpba.2017.06.056.
Dumont, E., De Bleye, C., Sacré, P.-Y., Netchacovitch, L., Hubert, Ph., Ziemons, E., From near-infrared and Raman to surface-enhanced Raman spectroscopy: progress, limitations and perspectives in bioanalysis. Bioanalysis 8:10 (2016), 1077–1103, 10.4155/bio-2015-0030.
Yaseen, T., Pu, H., Sun, D.-W., Functionalization techniques for improving SERS substrates and their applications in food safety evaluation: a review of recent research trends. Trends Food Sci. Technol. 72 (2018), 162–174, 10.1016/j.tifs.2017.12.012.
Klutse, C.K., Mayer, A., Wittkamper, J., Cullum, B.M., Applications of self-assembled monolayers in surface-enhanced Raman scattering. J. Nanotechnol., 2012, 319038, 10.1155/2012/319038.
Shan, B., Pu, Y., Chen, Y., Liao, M., Li, M., Novel SERS labels: rational design, functional integration and biomedical applications. Coord. Chem. Rev. 371 (2018), 11–37, 10.1016/j.ccr.2018.05.007.
Pinheiro, P.C., Daniel-da-Silva, A.L., Nogueira, H.I.S., Trindade, T., Functionalized inorganic nanoparticles for magnetic separation and SERS detection of water pollutants. Eur. J. Inorg. Chem.(30), 2018, 3443–3461, 10.1002/ejic.201800132.
Fabris, L., Gold-based SERS tags for biomedical imaging. J. Opt., 17, 2015, 114002, 10.1088/2040-8978/17/11/114002.
De Bleye, C., Dumont, E., Hubert, C., Sacré, P.-Y., Netchacovitch, L., Chavez, P.-F., Hubert, Ph., Ziemons, E., A simple approach for ultrasensitive detection of bisphenols by multiplexed surface-enhanced Raman scattering. Anal. Chim. Acta 888 (2015), 118–125, 10.1016/j.aca.2015.07.023.
Gregas, M.K., Scaffidi, J.P., Lauly, B., Vo-Dinh, T., Surface-enhanced Raman scattering detection and tracking of nanoprobes: enhanced uptake and nuclear targeting in single cells. Appl. Spectrosc. 64 (2010), 858–866, 10.1366/000370210792081037.
Sirimuthu, N.M.S., Syme, C.D., Cooper, J.M., Investigation of the stability of labelled nanoparticles for SE(R)RS measurements in cells. Chem. Commun. 47 (2011), 4099–4101, 10.1039/c0cc05723a.
Jamieson, L.E., Jaworska, A., Jiang, J., Baranska, M., Harrison, D.J., Campbell, C.J., Simultaneous intracellular redox potential and pH measurements in live cells using SERS nanosensors. Analyst 140 (2015), 2330–2335, 10.1039/c4an02365j.
Han, S., Sun, J., Wang, J., Qian, W., Dong, J., A built-in surface-enhanced Raman scattering-active microneedle for sampling in vivo and surface-enhanced Raman scattering detection ex vivo of NO. J. Raman Spectrosc. 49 (2018), 1747–1755, 10.1002/jrs.5469.
Qin, X., Lyu, M., Si, Y., Yang, J., Wu, Z., Li, J., Alkyne-based surface-enhanced Raman scattering nanoprobe for ratiometric imaging analysis of caspase 3 in live cells and tissues. Anal. Chim. Acta 1043 (2018), 115–122, 10.1016/j.aca.2018.09.009.
Shen, Y., Liang, L., Zhang, J., Li, Z., Yue, J., Wang, J., Xu, W., Shi, W., Xu, S., Interference-free surface-enhanced Raman scattering nanosensor for imaging and dynamic monitoring of reactive oxygen species in mitochondria during photothermal therapy. Sensors Actuators B Chem. 285 (2019), 84–91, 10.1016/j.snb.2019.01.036.
Dumont, E., De Bleye, C., Cailletaud, J., Sacré, P.-Y., Van Lerberghe, P.-B., Rogister, B., Rance, G.A., Aylott, J.W., Hubert, P., Ziemons, E., Development of a SERS strategy to overcome the nanoparticle stabilisation effect in serum-containing samples: application to the quantification of dopamine in the culture medium of PC-12 cells. Talanta 186 (2018), 8–16, 10.1016/j.talanta.2018.04.038.
De Bleye, C., Dumont, E., Rozet, E., Sacré, P.-Y., Chavez, P.-F., Netchacovitch, L., Piel, G., Hubert, P., Ziemons, E., Determination of 4-aminophenol in a pharmaceutical formulation using surface enhanced Raman scattering: from development to method validation. Talanta 116 (2013), 899–905, 10.1016/j.talanta.2013.07.084.
Fisk, H., Westley, C., Turner, N.J., Goodacre, R., Achieving optimal SERS through enhanced experimental design. J. Raman Spectrosc. 47:1 (2016), 59–66, 10.1002/jrs.4855.
Gloria, D., Gooding, J.J., Moran, G., Hibbert, D.B., Electrochemically fabricated three dimensional nanoporous gold films optimized for surface enhanced Raman scattering. J. Electroanal. Chem. 656 (2011), 114–119, 10.1016/j.jelechem.2010.12.028.
Jarvis, R.M., Rowe, W., Yaffe, N.R., O'Connor, R., Knowles, J.D., Blanch, E.W., Goodacre, R., Multiobjective evolutionary optimisation for surface-enhanced Raman scattering. Anal. Bioanal. Chem. 397 (2010), 1893–1901, 10.1007/s00216-010-3739-z.
Levene, C., Correa, E., Blanch, E.W., Goodacre, R., Enhancing surface enhanced Raman scattering (SERS) detection of propranolol with multiobjective evolutionary optimization. Anal. Chem. 84 (2012), 7899–7905, 10.1021/ac301647a.
Sallum, L.F., Soares, F.L.F., Ardila, J.A., Carneiro, R.L., Optimization of SERS scattering by Ag-NPs-coated filter paper for quantification of nicotinamide in a cosmetic formulation. Talanta 118 (2014), 353–358, 10.1016/j.talanta.2013.10.039.
Mabbott, S., Correa, E., Cowcher, D.P., Allwood, J.W., Goodacre, R., Optimization of parameters for the quantitative surface-enhanced Raman scattering detection of mephedrone using a fractional factorial design and a portable Raman spectrometer. Anal. Chem. 85 (2013), 923–931, 10.1021/ac302542r.
Alvarenga, B.R. Jr., Soares, F.L.F., Ardila, J.A., Durango, L.G.C., Forim, M.R., Carneiro, R.L., Determination of B-complex vitamins in pharmaceutical formulations by surface-enhanced Raman spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 188 (2018), 589–595, 10.1016/j.saa.2017.07.049.
Lee, P.C., Meisel, D., Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 86 (1982), 3391–3395, 10.1021/j100214a025.
Nalbant Esenturk, E., Hight Walker, A.R., Surface-enhanced Raman scattering spectroscopy via gold nanostars. J. Raman Spectrosc. 40 (2009), 86–91, 10.1002/jrs.2084.
Zhu, X.-Y., Wang, A.-J., Chen, S.-S., Luo, X., Feng, J.-J., Facile synthesis of AgPt@Ag core-shell nanoparticles as highly active surface-enhanced Raman scattering substrates. Sensors Actuators B Chem. 260 (2018), 945–952, 10.1016/j.snb.2017.12.185.
Tripathi, A., Emmons, E.D., Kline, N.D., Christesen, S.D., Fountain, A.W. III, Guicheteau, J.A., Molecular structure and solvent factors influencing SERS on planar gold substrates. J. Phys. Chem. C 122 (2018), 10205–10216, 10.1021/acs.jpcc.8b00353.
Do, W.H., Lee, C.J., Kim, D.Y., Jung, M.J., Adsorption of 2-mercaptopyridine and 4-mercaptopyridine on a silver surfaces investigated by SERS spectroscopy. J. Ind. Eng. Chem. 18 (2012), 2141–2146, 10.1016/j.jiec.2012.06.009.
Hassan, N., Holze, R., Surface enhanced Raman spectroscopy of self-assembled monolayers of 2-mercaptopyridine on a gold electrode. Russ. J. Electrochem. 48:4 (2012), 401–411, 10.1134/S1023193512030056.
Jung, H.S., Kim, K., Kim, M.S., Raman spectroscopic investigation of the adsorption of 4-mercaptopyridine on a silver-sol surface. J. Mol. Struct. 407 (1997), 139–147, 10.1016/S0022-2860(97)00006-9.
Guo, H., Ding, L., Mo, Y., Adsorption of 4-mercaptopyridine onto laser-ablated gold, silver and copper oxide films: a comparative surface-enhanced Raman scattering investigation. J. Mol. Struct. 991 (2011), 103–107, 10.1016/j.molstruc.2011.02.012.
Nishiyama, K., Tsuchiyama, M., Kubo, A., Seriu, H., Miyazaki, S., Yoshimoto, S., Taniguchi, I., Conformational change in 4-pyridineethanethiolate self-assembled monolayers on Au(111) driven by protonation/deprotonation in electrolyte solutions. Phys. Chem. Chem. Phys., 10, 2008, 10.1039/b810777g 6935-3939.
Bilic, A., Reimers, J.R., Adsorption of pyridine on the gold(111) surface: implications for “alligator clips” for molecular wires. J. Phys. Chem. B 106 (2002), 6740–6747, 10.1021/jp020590i.
Nath, S., Ghosh, S.K., Kundu, S., Praharaj, S., Panigrahi, S., Pal, T., Is gold really softer than silver? HSAB principle revisited. J. Nanopart. Res. 8 (2006), 111–116, 10.1007/s11051-005-8025-1.
Tripathi, A., Emmons, E.D., Christesen, S.D., Fountain, A.W., Guicheteau, J.A., Kinetics and reaction mechanisms of thiophenol adsorption on gold studied by surface-enhanced Raman spectroscopy. J. Phys. Chem. C 117 (2013), 22834–22842, 10.1021/jp407105v.
Jones, R.A., Katritzky, A.R., 721. Tautomeric pyridines. Part I. Pyrid-2- and -4-thione. J. Chem. Soc., 1958, 3610–3613, 10.1039/jr9580003610.
Zheng, X.-S., Hu, P., Zhong, J.-H., Zong, C., Wang, X., Liu, B.-J., Ren, B., Laser power dependent surface-enhanced Raman spectroscopic study of 4-mercaptopyridine on uniform gold nanoparticle-assembled substrates. J. Phys. Chem. C 118 (2014), 3750–3757, 10.1021/jp409711r.
Ramos, A.P., Dynamic light scattering applied to nanoparticle characterization. Da Roz, A.L., Ferreira, M., de Lima Leite, F., Oliveira, O.N. Jr., (eds.) Nanocharacterization Techniques, 2017, Elsevier, United Kingdom, 99–110.
Liu, S., Lämmerhofer, M., Functionalized gold nanoparticles for sample preparation: a review. Electrophoresis 40 (2019), 2438–2461, 10.1002/elps.201900111.
Bhattacharjee, S., DLS and zeta potential - what they are and what they are not?. J. Control. Release 235 (2016), 337–351, 10.1016/j.jconrel.2016.06.017.
Stoyanov, S., Petkov, I., Antonov, L., Stoyanova, T., Karagiannidis, P., Aslanidis, P., Thione–thiol tautomerism and stability of 2- and 4-mercaptopyridines and 2-mercaptopyrimidines. Can. J. Chem., 68, 1990, 1482, 10.1139/v90-227.
Takahashi, M., Fujita, M., Ito, M., SERS application to some electroorganic reactions. Surf. Sci. 158 (1985), 307–313, 10.1016/0039-6028(85)90305-X.