Paper published in a journal (Scientific congresses and symposiums)
Semantic enrichment of point cloud by automatic extraction and enhancement of 360° panoramas
Tabkha, A.; Hajji, R.; Billen, Roland et al.
2019In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2 (W17), p. 355-362
Peer Reviewed verified by ORBi
 

Files


Full Text
isprs-archives-XLII-2-W17-355-2019.pdf
Publisher postprint (1.99 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
3D Point cloud; Semantic information; Feature extraction,; point cloud representation; Deep learning; Image recognition
Abstract :
[en] The raw nature of point clouds is an important challenge for their direct exploitation in architecture, engineering and construction applications. Particularly, their lack of semantics hinders their utility for automatic workflows (Poux, 2019). In addition, the volume and the irregularity of the structure of point clouds makes it difficult to directly and automatically classify datasets efficiently, especially when compared to the state-of-the art 2D raster classification. Recently, with the advances in deep learning models such as convolutional neural networks (CNNs) , the performance of image-based classification of remote sensing scenes has improved considerably (Chen et al., 2018; Cheng et al., 2017). In this research, we examine a simple and innovative approach that represent large 3D point clouds through multiple 2D projections to leverage learning approaches based on 2D images. In other words, the approach in this study proposes an automatic process for extracting 360° panoramas, enhancing these to be able to leverage raster data to obtain domain-base semantic enrichment possibilities. Indeed, it is very important to obtain a rigorous characterization for use in the classification of a point cloud. Especially because there is a very large variety of 3D point cloud domain applications. In order to test the adequacy of the method and its potential for generalization, several tests were performed on different datasets. The developed semantic augmentation algorithm uses only the attributes X, Y, Z and camera positions as inputs.
Disciplines :
Earth sciences & physical geography
Computer science
Author, co-author :
Tabkha, A.
Hajji, R.
Billen, Roland  ;  Université de Liège - ULiège > Département de géographie > Unité de Géomatique - Topographie et géométrologie
Poux, Florent  ;  Université de Liège - ULiège > Département de géographie > Unité de Géomatique - Topographie et géométrologie
Language :
English
Title :
Semantic enrichment of point cloud by automatic extraction and enhancement of 360° panoramas
Alternative titles :
[fr] ENRICHISSEMENT SÉMANTIQUE DE NUAGE DE POINTS PAR EXTRACTION AUTOMATIQUE ET AMÉLIORATION DE PANORAMAS 360°
Publication date :
29 November 2019
Event name :
6th International Workshop LowCost 3D – Sensors, Algorithms, Applications
Event organizer :
INSA Strasbourg
Event place :
Strasbourg, France
Event date :
du 2 décembre 2019 au 3 décembre 2019
Audience :
International
Journal title :
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
ISSN :
1682-1750
eISSN :
2194-9034
Publisher :
Copernicus, Goettingen, Germany
Volume :
XLII-2
Issue :
W17
Pages :
355-362
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 11 December 2019

Statistics


Number of views
218 (9 by ULiège)
Number of downloads
161 (11 by ULiège)

Scopus citations®
 
6
Scopus citations®
without self-citations
3
OpenCitations
 
2
OpenAlex citations
 
5

Bibliography


Similar publications



Contact ORBi