electromigration; memristor; nanofabrication; joule heating; current crowding; thin films
Abstract :
[en] Non-volatile resistive memory cells are promising candidates to tremendously impact the further
development of Boolean and neuromorphic computing. In particular, nanoscale memory-bit cells
based on electromigration (EM)-induced resistive switching in monolithic metallic structures have
been identified as an appealing and competitive alternative to achieve ultrahigh density while keeping
straightforward manufacturing processes. In this work, we investigate the EM-induced resistance
switching in indented Al microstrips. In order to guarantee a large switching endurance, we limited
the on-to-off ratio to a minimum readable value. Two switching protocols were tested, (i) a variable
current pulse amplitude adjusted to ensure a precise change of resistance, and (ii) a fixed current pulse
amplitude. Both approaches exhibit an initial training period where the mean value of the device’s
resistance drifts in time, followed by a more stable behavior. Electron microscopy imaging of the
devices show irreversible changes of the material properties from the early stages of the switching
process. High and low resistance states show retention times of days and endurances of∼10^3 cycles.
Research Center/Unit :
CAREM - Cellule d'Appui à la Recherche et à l'Enseignement en Microscopie - ULiège
Disciplines :
Physics
Author, co-author :
Lombardo, Joseph ; Université de Liège - ULiège > Département de physique > Physique expérimentale des matériaux nanostructurés
Collienne, Simon ; Université de Liège - ULiège > Département de physique > Physique expérimentale des matériaux nanostructurés
Petrillo, Adrien
Fourneau, Emile ; Université de Liège - ULiège > Département de physique > Physique des solides, interfaces et nanostructures
Nguyen, Ngoc Duy ; Université de Liège - ULiège > Département de physique > Physique des solides, interfaces et nanostructures
Silhanek, Alejandro ; Université de Liège - ULiège > Département de physique > Physique expérimentale des matériaux nanostructurés
Language :
English
Title :
Electromigration-induced resistance switching in indented Al microstrips
Alternative titles :
[fr] Commutation de résistance induite par électromigration dans des microrubans en Al indentés.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Loyd J R 1997 Electromigration in thin film conductors Semicond. Sci. Technol. 12 1177
Esen G and Fuhrer M S 2005 Temperature control of electromigration to form gold nanogap junctions Appl. Phys. Lett. 87 263101
Strachan D R, Smith D E, Johnston D E, Park T-H, Therien M J, Bonnell D A and Johnson A T 2005 Controlled fabrication of nanogaps in ambient environment for molecular electronics Appl. Phys. Lett. 86 043109
Trouwborst M L, van der Molen S J and van Wees B J 2006 The role of Joule heating in the formation of nanogaps by electromigration J. Appl. Phys. 99 114316
Ittah N, Yutsis I and Selzer Y 2008 Fabrication of highly stable configurable metal quantum point contacts Nano Lett. 8 922
Campbell J M and Knobel R G 2013 Feedback-controlled electromigration for the fabrication of point contacts Appl. Phys. Lett. 102 023105
Baumans X D A et al 2016 Thermal and quantum depletion of superconductivity in narrow junctions created by controlled electromigration Nat. Commun. 7 10560
Lombardo J, Jelic Z L, Baumans X D A, Scheerder J E, Nacenta J P, Moshchalkov V V, Van de Vondel J, Kramer R B G, Milosevic M V and Silhanek A V 2018 In situ tailoring of superconducting junctions via electro-annealing Nanoscale 10 1987
Robbes D, Miklich A H and Kingston J J 1990 Josephson weak links in thin films of YBa2Cu3O7-x induced by electrical pulses Appl. Phys. Lett. 56 2240
Keijers W, Baumans X D A, Panghotra R, Lombardo J, Zharinov V S, Kramer R B G, Silhanek A V and Van de Vondel J 2018 Nano-SQUIDs with controllable weak links created via current-induced atom migration Nanoscale 10 21475
Blanco Alvarez S, Brisbois J, Melinte S, Kramer R B G and Silhanek A V 2019 Statistics of thermomagnetic breakdown in Nb superconducting films Sci. Rep. 9 3659
Gurunarayanan S P, Verellen N, Zharinov V S, Shirley F J, Moshchalkov V V, Heyns M, Van de Vondel J, Radu I P and Van Dorpe P 2017 Electrically driven unidirectional optical nanoantennas Nano Lett. 17 7433
Sannicolo T et al 2016 Direct imaging of the onset of electrical conduction in silver nanowire networks by infrared thermography: evidence of geometrical quantized percolation Nano Lett. 16 7046
Bellet D et al 2017 Transparent electrodes based on silver nanowire networks: from physical considerations towards device integration Materials 10 570
Wu Z M, Steinacher M, Huber R, Calame M, van der Molen S J and Schonenberger C 2007 Feedback controlled electromigration in four-terminal nanojunctions Appl. Phys. Lett. 91 053118
Kanamaru Y, Ando M and Shirakashi J-I 2015 Ultrafast feedback-controlled electromigration using a field-programmable gate array J. Vac Sci. Technol. B 33 02B106
Heersche H B, Lientschnig G, O'Neill K, Van Der Zant H S J and Zandbergen H W 2007 In situ imaging of electromigration-induced nanogap formation by transmission electron microscopy Appl. Phys. Lett. 91 072107
Talukder S, Ghosh A and Pratap R 2012 Nanoscale control of electro-migration for resistance tuning of metal lines J. ISSS 1 16
Zharinov V S, Baumans X D A, Silhanek A V, Janssens E and Van de Vondel J 2018 Controlled electromigration protocol revised Rev. Sci. Instrum. 89 043904
Xiang C, Kim J Y and Penner R M 2009 Reconnectable sub 5 nm nanogaps in ultralong gold nanowires Nano Lett. 9 2133
Li Z, Bauer C L, Mahajan S and Milnes A G 1992 Degradation and subsequent healing by electromigration in Al-1 wt Si thin films J. Appl. Phys. 72 1821
Hong C-F, Togo M and Hoh K 1993 Repair of electromigration-induced voids in aluminum interconnection by current reversal Japan. J. Appl. Phys. 32 L624
Kozlova T, Rudneva M and Zandbergen H W 2003 In situ TEM and STEM studies of reversible electromigration in thin palladium-platinum bridges Nanotechnology 24 505708
Baumans X D A et al 2017 Healing effect of controlled anti-electromigration on conventional and high-Tc superconducting nanowires Small 13 1700384
Johnson S L, Sundararajan A, Hunley D P and Strachan D R 2010 Memristive switching of single-component metallic nanowires Nanotechnology 21 125204
Chua L O 1971 Memristor-the missing circuit element IEEE Trans. Circuit Theory CT-18 507
Chua L O and Kang S M 1976 Proc. IEEE 64 209
Prodromakis T, Toumazou C and Chua L O 2012 Nat. Mater. 11 478
Strukov D B, Snider G S, Stewart D R and Williams R S 2008 The missing memristor found Nature 453 80
Yang J J, Strukov D B and Stewart D R 2013 Memristive devices for computing Nat. Nanotechnol. 8 13
Naitoh Y, Horikawa M, Abe H and Shimizu T 2006 Resistance switch employing a simple metal nanogap junction Nanotechnology 17 5669
Schirm C, Matt M, Pauly F, Cuevas J C, Nielaba P and Scheer E 2013 A current-driven single-atom memory Nat. Nanotechnol. 8 645
Minnai Ch, Bellacicca A, Brown S A and Milani P 2017 Facile fabrication of complex networks of memristive devices Sci. Rep. 7 7955
Palau A et al 2018 Electrochemical tuning of metal insulator transition and nonvolatile resistive switching in superconducting films ACS Appl. Mater. Interfaces 10 30522
Baumans X D A, Fernández-Rodríguez A, Mestres N, Collienne S, Van de Vondel J, Palau A and Silhanek A V 2019 Electromigration in the dissipative state of high-temperature superconducting bridges Appl. Phys. Lett. 114 012601
Maan A K, Jayadevi D A and James A P 2017 A survey of memristive threshold logic circuits IEEE Trans Neural Netw. Learn. Syst. 28 1734
Zidan M A, Chen A, Indiveri G and Lu W D 2018 Memristive computing devices and applications Nat. Electron. 1 22
Moenig R, Park Y B and Volkert C A 2006 Thermal fatigue in copper interconnects AIP Conf. Proc. 817 147
Park Y-B, Moenig R and Volkert C A 2007 Frequency effect on thermal fatigue damage in Cu interconnects Thin Solid Films 515 3253
Keller R R, Geiss R H, Barbosa N, Slifka A J and Read D T 2007 Strain-induced grain growth during rapid thermal cycling of aluminum interconnects Metall. Mater. Trans. 38A 2263
Luo X M, Zhang B and Zhang G P 2014 Frequency-dependent failure mechanisms of nanocrystalline gold interconnect lines under general alternating current J. Appl. Phys. 116 103509
Moenig R, Keller R R and Volkert C A 2004 Thermal fatigue testing of thin metal films Rev. Sci. Instrum. 75 4997
Wang M, Zhang B, Zhang G P and Liu C S 2011 Scaling of reliability of gold interconnect lines subjected to alternating current Appl. Phys. Lett. 99 011910
Avery A D, Mason S J, Bassett D, Wesenberg D and Zink B L 2015 Thermal and electrical conductivity of approximately 100-nm permalloy, Ni, Co, Al, and Cu films and examination of the Wiedemann-Franz law Phys. Rev. B 92 214410
Song Q, Cui Z, Xia S and Chen S 2004 An ac microcalorimeter for measuring specific heat of thin films Microelectron. J. 35 817
Holm R 1967 Electric Contacts: Theory and Application (Berlin: Springer)
Hershkovitz M, Blech I A and Komem Y 1985 Stress relaxation in thin aluminium films Thin Solid Films 130 87
Lloyd J R and Koch R H 1988 Study of electromigrationinduced resistance and resistance decay in Al thin film conductors Appl. Phys. Lett. 52 194
Ringler I J and Lloyd J R 2016 Stress relaxation in pulsed DC electromigration measurements AIP Adv. 6 095118
Rossel C, Maeno Y and Morgenstern I 1989 Phys. Rev. Lett. 62 681
Amir A, Oreg Y and Imry Y 2010 Annu. Rev. Condens. Matter Phys. 2 235
Amir A, Oreg Y and Imry Y 2008 Phys. Rev. B 77 165207
Lahini Y, Gottesman O, Amir A and Rubinstein S M 2017 Phys. Rev. Lett. 118 085501
Matan K, Williams R B, Witten T A and Nagel S R 2002 Phys. Rev. Lett. 88 076101
Amir A, Oreg Y and Imry Y 2011 Proc. Natl Acad. Sci. USA 109 1850
Balankin A S, Huerta O S, Mendez F H and Ortiz J P 2011 Phys. Rev. E 84 021118
Cugliandolo L F, Kurchan J and Ritort F 1994 Phys. Rev. B 49 6331
Sibani P and Hoffmann K H 1989 Phys. Rev. Lett. 63 2853
Pleimling M and Tauber U C 2011 Phys. Rev. B 84 174509
Du X, Li G, Andrei E Y, Greenblatt M and Shuk P 2007 Nat. Phys. 3 111
Cugliandolo L F and Kurchan J 1993 Phys. Rev. Lett. 71 173
Amir A, Oreg Y and Imry Y 2009 Phys. Rev. Lett. 103 126403
Moeckly B H, Lathrop D K and Buhrman R A 1993 Electromigration study of oxygen disorder and grain-boundary effects in YBa2Cu3O7-δ thin films Phys. Rev. B 47 400
Derenyi I, Lee C and Barabási A-L 1998 Ratchet effect in surface electromigration: smoothing surfaces by an ac field Phys. Rev. Lett. 80 1473
de Pablo P J, Colchero J, Gomez-Herrero J, Asenjo A, Luna M, Serena P A and Baro A M 2000 Ratchet effect in surface electromigration detected with scanning force microscopy in gold micro-stripes Surf. Sci. 464 123
Tian H, Ahn W, Maize K, Si M, Ye P, Alam M A, Shakouri A and Bermel P 2018 Thermoreflectance imaging of electromigration evolution in asymmetric aluminum constrictions J. Appl. Phys. 123 035107
Sawtelle S D, Kobos Z A and Reed M A 2019 Critical temperature in feedback-controlled electromigration of gold nanostructures Nanotechnology 30 015201
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.