Afendras, G. (2013). Unified extension of variance bounds for integrated Pearson family. Ann. Inst. Statist. Math. 65 687-702. MR3094952 https://doi.org/10.1007/s10463-012-0388-3
Afendras, G., Balakrishnan, N. and Papadatos, N. (2018). Orthogonal polynomials in the cumulative Ord family and its application to variance bounds. Statistics 52 364-392. MR3772186 https://doi.org/10.1080/02331888.2017.1406940
Afendras, G., Papadatos, N. and Papathanasiou, V. (2007). The discrete Mohr and Noll inequality with applications to variance bounds. Sankhya 69 162-189. MR2428867
Afendras, G., Papadatos, N. and Papathanasiou, V. (2011). An extended Stein-type covariance identity for the Pearson family with applications to lower variance bounds. Bernoulli 17 507-529. MR2787602 https://doi.org/10.3150/10-BEJ282
Afendras, G. and Papathanasiou, V. (2014). A note on a variance bound for the multinomial and the negative multinomial distribution. Naval Res. Logist. 61 179-183. MR3197132 https://doi.org/10. 1002/nav.21575
Arras, B. and Houdré, C. (2019). On Stein's Method for Infinitely Divisible Laws with Finite First Moment. SpringerBriefs in Probability and Mathematical Statistics. Cham: Springer. MR3931309
Arras, B. and Houdré, C. (2019). On Stein's method for multivariate self-decomposable laws. Electron. J. Probab. 24 128. MR4029431
Barbour, A.D., Holst, L. and Janson, S. (1992). Poisson Approximation. Oxford Studies in Probability 2. New York: The Clarendon Press. Oxford Science Publications. MR1163825
Barbour, A.D., Luczak, M.J. and Xia, A. (2018). Multivariate approximation in total variation, II: Discrete normal approximation. Ann. Probab. 46 1405-1440. MR3785591 https://doi.org/10.1214/ 17-AOP1205
Baricz, Á. (2008).Mills' ratio: Monotonicity patterns and functional inequalities. J. Math. Anal. Appl. 340 1362-1370. MR2390935 https://doi.org/10.1016/j.jmaa.2007.09.063
Bonnefont, M. and Joulin, A. (2014). Intertwining relations for one-dimensional diffusions and application to functional inequalities. Potential Anal. 41 1005-1031. MR3269712 https://doi.org/10.1007/ s11118-014-9408-7
Bonnefont, M. and Joulin, A. (2019). A note on eigenvalues estimates for one-dimensional diffusion operators. ArXiv preprint. Available at arXiv:1906.02496.
Bonnefont, M., Joulin, A. and Ma, Y. (2016). A note on spectral gap and weighted Poincaré inequalities for some one-dimensional diffusions. ESAIM Probab. Stat. 20 18-29. MR3519678 https://doi.org/10.1051/ps/2015019
Borovkov, A.A. and Utev, S.A. (1984). On an inequality and a characterization of the normal distribution. Theor. Probab. Appl. 28 219-228.
Brascamp, H.J. and Lieb, E.H. (1976). On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal. 22 366-389. MR0450480 https://doi.org/10.1016/0022-1236(76)90004-5
Cacoullos, T. (1982). On upper and lower bounds for the variance of a function of a random variable. Ann. Probab. 10 799-809. MR0659549
Cacoullos, T., Papadatos, N. and Papathanasiou, V. (1997). Variance inequalities for covariance kernels and applications to central limit theorems. Theor. Probab. Appl. 42 1149-155.
Cacoullos, T. and Papathanasiou, V. (1985). On upper bounds for the variance of functions of random variables. Statist. Probab. Lett. 3 175-184. MR0801687 https://doi.org/10.1016/0167-7152(85) 90014-8
Cacoullos, T. and Papathanasiou, V. (1986). Bounds for the variance of functions of random variables by orthogonal polynomials and Bhattacharyya bounds. Statist. Probab. Lett. 4 21-23. MR0822720 https://doi.org/10.1016/0167-7152(86)90033-7
Cacoullos, T. and Papathanasiou, V. (1989). Characterizations of distributions by variance bounds. Statist. Probab. Lett. 7 351-356. MR1001133 https://doi.org/10.1016/0167-7152(89)90050-3
Cacoullos, T. and Papathanasiou, V. (1992). Lower variance bounds and a new proof of the central limit theorem. J. Multivariate Anal. 43 173-184. MR1193610 https://doi.org/10.1016/0047-259X(92) 90032-B
Cacoullos, T. and Papathanasiou, V. (1995). A generalization of covariance identity and related characterizations. Math. Methods Statist. 4 106-113. MR1324694
Carlen, E.A., Cordero-Erausquin, D. and Lieb, E.H. (2013). Asymmetric covariance estimates of Brascamp-Lieb type and related inequalities for log-concave measures. Ann. Inst. Henri Poincaré Probab. Stat. 49 1-12. MR3060145 https://doi.org/10.1214/11-AIHP462
Chang, W.-Y. and Richards, D.S.P. (1999). Variance inequalities for functions of multivariate random variables. In Advances in Stochastic Inequalities (Atlanta, GA, 1997). Contemp. Math. 234 43-67. Providence, RI: Amer. Math. Soc. MR1694762 https://doi.org/10.1090/conm/234/03444
Chatterjee, S. (2014). A short survey of Stein's method. In Proceedings of the International Congress of Mathematicians - Seoul 2014. Vol. IV 1-24. Seoul: Kyung Moon Sa. MR3727600
Chatterjee, S. and Shao, Q.-M. (2011). Nonnormal approximation by Stein's method of exchangeable pairs with application to the Curie-Weiss model. Ann. Appl. Probab. 21 464-483. MR2807964 https://doi.org/10.1214/10-AAP712
Chen, L.H.Y. (1975). Poisson approximation for dependent trials. Ann. Probab. 3 534-545. MR0428387 https://doi.org/10.1214/aop/1176996359
Chen, L.H.Y. (1982). An inequality for the multivariate normal distribution. J. Multivariate Anal. 12 306-315. MR0661566 https://doi.org/10.1016/0047-259X(82)90022-7
Chen, L.H.Y. (1985). Poincaré-type inequalities via stochastic integrals. Z. Wahrsch. Verw. Gebiete 69 251-277. MR0779459 https://doi.org/10.1007/BF02450283
Chen, L.H.Y., Goldstein, L. and Shao, Q.-M. (2011). Normal Approximation by Stein's Method. Probability and Its Applications (New York). Heidelberg: Springer. MR2732624 https://doi.org/10.1007/ 978-3-642-15007-4
Chen, P., Nourdin, I. and Xu, L. (2018). Stein's method for asymmetric α-stable distributions, with application to the stable clt. ArXiv preprint. Available at arXiv:1808.02405.
Chernoff, H. (1980). The identification of an element of a large population in the presence of noise. Ann. Statist. 8 1179-1197. MR0594637
Courtade, T.A., Fathi, M. and Pananjady, A. (2019). Existence of Stein kernels under a spectral gap, and discrepancy bounds. Ann. Inst. Henri Poincaré Probab. Stat. 55 777-790. MR3949953 https://doi.org/10.1214/18-aihp898
Cuadras, C.M. (2002). On the covariance between functions. J. Multivariate Anal. 81 19-27. MR1901203 https://doi.org/10.1006/jmva.2001.2000
Diaconis, P. and Zabell, S. (1991). Closed form summation for classical distributions: Variations on a theme of de Moivre. Statist. Sci. 6 284-302. MR1144242
Döbler, C. (2015). Stein's method of exchangeable pairs for the beta distribution and generalizations. Electron. J. Probab. 20 109. MR3418541 https://doi.org/10.1214/EJP.v20-3933
Ehm, W. (1991). Binomial approximation to the Poisson binomial distribution. Statist. Probab. Lett. 11 7-16. MR1093412 https://doi.org/10.1016/0167-7152(91)90170-V
Ernst, M., Reinert, G. and Swan, Y. (2020). Supplement to "First-order covariance inequalities via Stein's method." https://doi.org/10.3150/19-BEJ1182SUPP.
Ernst, M., Reinert, G. and Swan, Y. (2019). On infinite covariance expansions. ArXiv preprint. Available at arXiv:1906.08376.
Fang, X., Shao, Q.-M. and Xu, L. (2019). Multivariate approximations in Wasserstein distance by Stein's method and Bismut's formula. Probab. Theory Related Fields 174 945-979. MR3980309 https://doi.org/10.1007/s00440-018-0874-5
Fathi, M. (2018). Higher-Order Stein kernels for Gaussian approximation. ArXiv preprint. Available at arXiv:1812.02703.
Fathi, M. (2019). Stein kernels and moment maps. Ann. Probab. 47 2172-2185. MR3980918 https://doi.org/10.1214/18-AOP1305
Furioli, G., Pulvirenti, A., Terraneo, E. and Toscani, G. (2017). Fokker-Planck equations in the modeling of socio-economic phenomena. Math. Models Methods Appl. Sci. 27 115-158. MR3597010 https://doi.org/10.1142/S0218202517400048
Goldstein, L. and Reinert, G. (2005). Distributional transformations, orthogonal polynomials, and Stein characterizations. J. Theoret. Probab. 18 237-260. MR2132278 https://doi.org/10.1007/ s10959-004-2602-6
Goldstein, L. and Reinert, G. (2013). Stein's method for the beta distribution and the Pólya- Eggenberger urn. J. Appl. Probab. 50 1187-1205. MR3161381 https://doi.org/10.1239/jap/ 1389370107
Gorham, J., Duncan, A.B., Vollmer, S.J. and Mackey, L. (2019). Measuring sample quality with diffusions. Ann. Appl. Probab. 29 2884-2928. MR4019878 https://doi.org/10.1214/19-AAP1467
Gorham, J. and Mackey, L. (2017). Measuring sample quality with kernels. In Proceedings of the 34th International Conference on Machine Learning-Volume 70 1292-1301. JMLR. org.
Hillion, E., Johnson, O. and Yu, Y. (2014). A natural derivative on [0, n] and a binomial Poincaré inequality. ESAIM Probab. Stat. 18 703-712. MR3334010 https://doi.org/10.1051/ps/2014007
Hoeffding, W. (2012). The Collected Works of Wassily Hoeffding. New York: Springer.
Höffding, W. (1940). Maszstabinvariante Korrelationstheorie. Schr. Math. Inst. U. Inst. Angew. Math. Univ. Berlin 5 181-233. MR0004426
Karlin, S. (1993). A general class of variance inequalities. In Multivariate Analysis: Future Directions (University Park, PA, 1992). North-Holland Ser. Statist. Probab. 5 279-294. Amsterdam: North- Holland. MR1246366
Klaassen, C.A.J. (1985). On an inequality of Chernoff. Ann. Probab. 13 966-974. MR0799431
Korwar, R.M. (1991). On characterizations of distributions by mean absolute deviation and variance bounds. Ann. Inst. Statist. Math. 43 287-295. MR1128869 https://doi.org/10.1007/BF00118636
Kusuoka, S. and Tudor, C.A. (2012). Stein's method for invariant measures of diffusions viaMalliavin calculus. Stochastic Process. Appl. 122 1627-1651. MR2914766 https://doi.org/10.1016/j.spa.2012. 02.005
Landsman, Z., Vanduffel, S. and Yao, J. (2013). A note on Stein's lemma for multivariate elliptical distributions. J. Statist. Plann. Inference 143 2016-2022. MR3095090 https://doi.org/10.1016/j.jspi. 2013.06.003
Landsman, Z., Vanduffel, S. and Yao, J. (2015). Some Stein-type inequalities for multivariate elliptical distributions and applications. Statist. Probab. Lett. 97 54-62. MR3299751 https://doi.org/10.1016/j. spl.2014.11.005
Ley, C., Reinert, G. and Swan, Y. (2017). Distances between nested densities and a measure of the impact of the prior in Bayesian statistics. Ann. Appl. Probab. 27 216-241. MR3619787 https://doi.org/10.1214/16-AAP1202
Ley, C., Reinert, G. and Swan, Y. (2017). Stein's method for comparison of univariate distributions. Probab. Surv. 14 1-52. MR3595350 https://doi.org/10.1214/16-PS278
Ley, C. and Swan, Y. (2013). Stein's density approach and information inequalities. Electron. Commun. Probab. 18 7. MR3019670 https://doi.org/10.1214/ECP.v18-2578
Ley, C. and Swan, Y. (2016). Parametric Stein operators and variance bounds. Braz. J. Probab. Stat. 30 171-195. MR3481100 https://doi.org/10.1214/14-BJPS271
Mackey, L. and Gorham, J. (2016). Multivariate Stein factors for a class of strongly log-concave distributions. Electron. Commun. Probab. 21 56. MR3548768 https://doi.org/10.1214/16-ecp15
Menz, G. and Otto, F. (2013). Uniform logarithmic Sobolev inequalities for conservative spin systems with super-quadratic single-site potential. Ann. Probab. 41 2182-2224. MR3098070 https://doi.org/10.1214/11-AOP715
Nash, J. (1958). Continuity of solutions of parabolic and elliptic equations. Amer. J. Math. 80 931-954. MR0100158 https://doi.org/10.2307/2372841
Nourdin, I. and Peccati, G. (2012). Normal Approximations with Malliavin Calculus: From Stein's method to universality. Cambridge Tracts in Mathematics 192. Cambridge: Cambridge Univ. Press. MR2962301 https://doi.org/10.1017/CBO9781139084659
Papathanasiou, V. (1995). A characterization of the Pearson system of distributions and the associated orthogonal polynomials. Ann. Inst. Statist. Math. 47 171-176. MR1341214 https://doi.org/10.1007/ BF00773421
Reinert, G. (1995). A weak law of large numbers for empirical measures via Stein's method. Ann. Probab. 23 334-354. MR1330773
Reinert, G., Mijoule, G. and Swan, Y. (2018). Stein gradients and divergences for multivariate continuous distributions. Available at arXiv:1806.03478.
Ross, N. (2011). Fundamentals of Stein's method. Probab. Surv. 8 210-293. MR2861132 https://doi.org/10.1214/11-PS182
Roustant, O., Barthe, F. and Iooss, B. (2017). Poincaré inequalities on intervals - application to sensitivity analysis. Electron. J. Stat. 11 3081-3119. MR3694577 https://doi.org/10.1214/17-EJS1310
Saumard, A. (2019). Weighted Poincaré inequalities, concentration inequalities and tail bounds related to Stein kernels in dimension one. Bernoulli 25 3978-4006. MR4010979 https://doi.org/10.3150/ 19-bej1117
Saumard, A. and Wellner, J.A. (2018). Efron's monotonicity property for measures on R2. J. Multivariate Anal. 166 212-224. MR3799644 https://doi.org/10.1016/j.jmva.2018.03.005
Saumard, A. and Wellner, J.A. (2019). On the isoperimetric constant, covariance inequalities and Lp-Poincaré inequalities in dimension one. Bernoulli 25 1794-1815. MR3961231 https://doi.org/10. 3150/18-BEJ1036
Schoutens, W. (2001). Orthogonal polynomials in Stein's method. J. Math. Anal. Appl. 253 515-531. MR1808151 https://doi.org/10.1006/jmaa.2000.7159
Stein, C. (1972). A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability Theory 583-602. MR0402873
Stein, C. (1986). Approximate Computation of Expectations. Institute of Mathematical Statistics Lecture Notes - Monograph Series 7. Hayward, CA: IMS. MR0882007
Toscani, G. (2019). Poincaré-type inequalities for stable densities. Ric. Mat. 68 225-236. MR3948329 https://doi.org/10.1007/s11587-018-0398-4
Upadhye, N.S., Čekanavičius, V. and Vellaisamy, P. (2017). On Stein operators for discrete approximations. Bernoulli 23 2828-2859. MR3648047 https://doi.org/10.3150/16-BEJ829
Xu, L. (2019). Approximation of stable law in Wasserstein-1 distance by Stein's method. Ann. Appl. Probab. 29 458-504. MR3910009 https://doi.org/10.1214/18-AAP1424