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We propose probabilistic representations for inverse Stein operators (i.e., solutions to Stein equations) under
general conditions; in particular, we deduce new simple expressions for the Stein kernel. These representa-
tions allow to deduce uniform and nonuniform Stein factors (i.e., bounds on solutions to Stein equations)
and lead to new covariance identities expressing the covariance between arbitrary functionals of an arbi-
trary univariate target in terms of a weighted covariance of the derivatives of the functionals. Our weights
are explicit, easily computable in most cases and expressed in terms of objects familiar within the context
of Stein’s method. Applications of the Cauchy–Schwarz inequality to these weighted covariance identities
lead to sharp upper and lower covariance bounds and, in particular, weighted Poincaré inequalities. Many
examples are given and, in particular, classical variance bounds due to Klaassen, Brascamp and Lieb or
Otto and Menz are corollaries. Connections with more recent literature are also detailed.
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1. Introduction

Much attention has been given in the literature to the problem of providing sharp tractable es-
timates on the variance of functions of random variables. Such estimates are directly related to
fundamental considerations of pure mathematics (e.g., isoperimetric, logarithmic Sobolev and
Poincaré inequalities), as well as essential issues from statistics (e.g., Cramér–Rao bounds, ef-
ficiency and asymptotic relative efficiency computations, maximum correlation coefficients and
concentration inequalities).

One of the starting points of this line of research is Chernoff’s famous result from [32] which
states that, if N ∼N (0,1), then

E
[
g′(N)

]2 ≤ Var
[
g(N)

] ≤ E
[
g′(N)2] (1)

for all sufficiently regular functions g :R→ R. Chernoff obtained the upper bound by exploiting
orthogonality properties of the family of Hermite polynomials. The upper bound in (1) is, in fact,
already available in [63] and is also a special case of the central inequality in [15]; see below.
Cacoullos [16] extends Chernoff’s bound to a wide class of univariate distributions (including
discrete distributions) by proving that if X ∼ p has a density function p with respect to the
Lebesgue measure then

E[τp(X)g′(X)]2

Var[X] ≤ Var
[
g(X)

] ≤ E
[
τp(X)g′(X)2] (2)

1350-7265 © 2020 ISI/BS

http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal
https://doi.org/10.3150/19-BEJ1182
mailto:m.ernst@uliege.be
mailto:reinert@stats.ox.ac.uk
mailto:yvswan@ulb.ac.be


2052 M. Ernst, G. Reinert and Y. Swan

with τp(x) = p(x)−1 ∫ ∞
x

(t − E[X])p(t)dt . It is easy to see that, if p is the standard normal
density, then τp(x) = 1 so that (2) contains (1). Cacoullos also obtains a similar bound as (2)
for discrete distributions on the positive integers, where the derivative is replaced by the forward
difference and the weight becomes τp(x) = p(x)−1 ∑∞

t=x+1 tp(t).
Variance inequalities such as (2) are closely related to a Brascamp–Lieb inequality from [15]

which, in dimension 1, states that if X ∼ p and p is strictly log-concave then

Var
[
g(X)

] ≤ E

[
(g′(X))2

(− logp)′′(X)

]
(3)

for all sufficiently regular functions g. In fact, the upper bound from (1) is an immediate con-
sequence of (3) because, if p is the standard Gaussian density, then (− logp)′′(x) ≡ 1. This
Brascamp–Lieb inequality is proved in [62] to be a consequence of Hoeffding’s classical covari-
ance inequality from [50], which states that if (X,Y ) is a continuous bivariate random vector
with cumulative distribution H(x,y) and marginal cdfs F(x), G(x) then

Cov
[
f (X),g(Y )

] =
∫ ∞

−∞

∫ ∞

−∞
f ′(x)

(
H(x,y) − F(x)G(y)

)
g′(y)dx dy (4)

under weak assumptions on f , g (see, e.g., [34]). The freedom of choice in the test functions f ,
g in (4) is exploited by [62] to prove that, if X has a C2 strictly convex absolutely continuous
density p then an asymmetric Brascamp–Lieb inequality holds:

∣∣Cov
[
f (X),g(X)

]∣∣ ≤ sup
x

{ |f ′(x)|
(logp)′′(x)

}
E

[∣∣g′(X)
∣∣]. (5)

In [23], identity (4) and inequalities (3) and (5) are extended to the multivariate setting and
connections with logarithmic Sobolev inequalities for spin systems and related inequalities for
log-concave densities are given. This material is extended in [71–73], providing applications in
the context of isoperimetric inequalities and weighted Poincaré inequalities. In [34], the identity
(4) is proved in all generality and used to provide expansions for the covariance in terms of
canonical correlations and variables.

Further generalizations of Chernoff’s bounds are provided in [18,19,29] and [51]; see also [14,
20,22,53,65] for the connection with probabilistic characterizations, as well as [43,77] for sev-
eral generalizations in particular to stable distributions. Often by exploiting properties of suitable
families of orthogonal polynomials, similar inequalities were obtained for univariate function-
als of some specific multivariate distributions, for example, in [5,17,21,24,55,56]. A historical
overview as well as a description of the connection between such bounds, the so-called Stein
identities from Stein’s method (see below) and Sturm–Liouville theory (see Section 4) can be
found in [35]. Finally, we mention that all this material is closely connected to the study of the
so-called spectral gap of the operator Lf = f ′′ + (logp)′f ′ which, in one dimension, is defined
as

λ = inf
g

E[(g′(X))2]
Var[g(X)] ,
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where the infimum is taken over all functions g ∈ C∞
0 (R) such that Var[g(X)] > 0. We will

return to this briefly in Section 4.3, and refer the reader to [11,13,70] and [12] for an up-to-date
overview of this topic.

To the best of our knowledge, the most general version of (1) and (2) is due to [52], where the
following result is proved.

Theorem 1.1 (Klaassen bounds). Let μ be some σ -finite measure. Let ρ(x, y) be a measurable
function such that ρ(x, ·) does not change sign for μ almost x ∈ R. Suppose that g is a measur-
able function such that G(x) = ∫

ρ(x, y)g(y)μ(dy)+ c is well-defined for some c ∈ R. Let X be
a real random variable with density p with respect to μ.

• (Klaassen upper variance bound) For all nonnegative measurable functions h : R→R such
that μ({x ∈R|g(x) 	= 0,p(x)h(x) = 0}) = 0 we have

Var
[
G(X)

] ≤ E

[
g(X)2

h(X)

(
1

p(X)

∫
ρ(z,X)H(z)p(z)μ(dz)

)]
(6)

with H :R→ R supposed well-defined by H(x) = ∫
ρ(x, y)h(y)μ(dy).

• (Cramér–Rao lower variance bound) For all measurable functions k : R → R such that
0 < E[k2(X)] < ∞ and E[k(X)] = 0 we have

Var
[
G(X)

] ≥ E[g(X)K(X)]2

Var[k(X)] , (7)

where K(x) = p(x)−1 ∫
ρ(z, x)k(z)p(z)μ(dz). Equality in (7) holds if and only if G is

linear in k, p-almost everywhere.

Klaassen’s proof of Theorem 1.1 relies on little more than the Cauchy–Schwarz inequality and
Fubini’s theorem; it has a slightly magical aura as little or no heuristic or context is provided as to
the best choices of test functions h, k and kernel ρ or even to the nature of the weights appearing
in (6) and (7). To the best of our knowledge, all available first-order variance bounds from the
literature can be obtained from either (6) or (7) by choosing the appropriate test functions h

or k and the appropriate kernel ρ. For instance, the weights appearing in the upper bound (6)
generalize the Stein kernel from Cacoullos’ bound (2) both in the discrete and the continuous
case. Indeed taking H(x) = x when the distribution p is continuous, h(x) = 1 and the weight
becomes p(x)−1

∫
ρ(z, x)zp(z)dμ(z) which is none other than τp(x). A similar argument holds

as well in the discrete case. In the same way, taking k(x) = x leads to K(x) = τp(x) in (7), and
thus the lower bound in (2) follows as well. The freedom of choice in the function h allows for
much flexibility in the quality of the weights; this fact seems to date somewhat underexploited.
This is perhaps due to the rather obscure nature of Klaassen’s weights, a topic which we shall be
one of the collateral learnings of this paper. Indeed we shall provide a natural theoretical home
for Klaassen’s result, in the framework of Stein’s method.

Several variations on Klaassen’s theorem have already been obtained via techniques related
to Stein’s method; an introduction of these techniques can be found in Section 2. The gist of
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the approach can nevertheless be understood very simply in the standard normal case. Stein’s
classical identity states that N ∼N (0,1) if and only if

E
[
Ng(N)

] = E
[
g′(N)

]
for all bounded, continuous g such that E

[|g′(N)|] < ∞. (8)

By the Cauchy–Schwarz inequality, we immediately deduce that, for all appropriate g,

E
[
g′(N)

]2 = E
[
N

(
g(N) −E

[
g(N)

])]2 ≤ E
[
N2]

E
[(

g(N) −E
[
g(N)

])2] ≤ Var
[
g(N)

]
, (9)

which gives the lower bound in (1). For the upper bound, still by the Cauchy–Schwarz inequality,

Var
[
g(N)

] ≤ E

[(∫ N

0
g′(x)dx

)2]
≤ E

[
N

∫ N

0

(
g′(x)

)2 dx

]
= E

[(
g′(N)

)2] (10)

where the last identity is a direct consequence of Stein’s identity (8) applied to the function
g(x) = ∫ x

0 (g′(u))2 du. This is the upper bound in (1). The idea behind this proof is due to Chen
[28]. As is now well known (again, we refer the reader to Section 2 for references and details),
Stein’s identity (8) for the normal distribution can be extended to basically any univariate (and
even multivariate) distribution via a family of objects called “Stein operators”. This leads to
a wide variety of Stein-type integration by parts identities and it is natural to wonder whether
Chen’s approach can be used to obtain generalizations of Klaassen’s theorem. First steps in this
direction are detailed in [59,60]; in particular, it is seen that general lower variance bounds are
easy to obtain from generalized Stein identities in the same way as in (9). Nevertheless, the
method of proof in (10) for the upper bound cannot be generalized to arbitrary targets and, even
in cases where the method does apply, the assumptions under which the bounds hold are quite
stringent. To the best of our knowledge, the first to obtain upper variance bounds via properties of
Stein operators is due to Saumard [71], by combining generalized Stein identities – expressed in
terms of the Stein kernel τp(x) – with Hoeffding’s identity (4). The scope of Saumard’s weighted
Poincaré inequalities is, nevertheless, limited and a general result such as Klaassen’s is, to this
date, not available in the literature.

There are obviously many applications of such material, not only towards considerations of
pure mathematics but also to more applied questions, such as – in no particular order – ques-
tions from sensitivity analysis [70], stochastic ordering [66], the study of spin systems [62] and
efficiency considerations [4]. We refer to all the above mentioned references for more references
and details.

The main contributions of this paper can be categorized in two types:

1. Covariance identities and inequalities. The first main contribution of this paper is a gener-
alization of Klaassen’s variance bounds from Theorem 1.1 to covariance inequalities of arbitrary
functionals of arbitrary univariate targets under minimal assumptions (see Theorems 3.1 and 3.5).
Our results hereby therefore also contain basically the entire literature on the topic, in a unified
framework containing in particular both continuous and discrete distributions alike. Moreover,
the weights that appear in our bounds bear a clear and natural interpretation in terms of Stein
operators which allow for easy computation for a wide variety of targets, as illustrated in the
different examples we tackle as well as in Tables 1, 2 and 3 in the supplementary material [38]
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in which we provide explicit variance bounds for univariate target distributions belonging to the
classical integrated Pearson and Ord families (see Example 3.7 for a definition). In particular,
Klaassen’s bounds, its aforementioned corollaries as well as an (asymetric) Brascamp–Lieb and
the weighted Poincaré inequality arise naturally in our setting. Moreover, in all these cases we
recover freedom of choice in the weights which allows to weaken the underlying assumptions
and extend the scope (e.g., to nonabsolutely continuous distributions).

2. Stein operators and their properties. The second main contribution of the paper lies in
our method of proof, which contributes to the theory of Stein operators themselves. Specifically,
we obtain several new probabilistic representations of inverse Stein operators (a.k.a. solutions
to Stein equations) which open the way to a wealth of new manipulations which were hitherto
unavailable. These representations also lead to new interpretations and ultimately new handles
on several quantities which are crucial to the theory surrounding Stein’s method (such as Stein
kernels, Stein equations, Stein factors and Stein bounds). Finally, the various objects we iden-
tify provide natural connections with other topics of interest, and pave the way to several new
research questions which we only briefly outline, for space reasons, in the final subsection of
Section 4.

The paper is organized as follows. Section 2 contains the theoretical foundations of the pa-
per. In Section 2.1 we recall the theory of canonical and standardized Stein operators introduced
in [58] and introduce a (new) notion of inverse Stein operator (Definition 2.5). We also iden-
tify minimal conditions under which Stein-type probabilistic integration by parts formulas hold
(see Lemmas 2.4 and 2.18). In Section 2.2, we provide the representation formulas for the in-
verse Stein operator (Lemmas 2.20 and 2.21). In Section 2.3, we clarify the conditions on the
test functions under which the different identities hold, and provide bridges with the classical
assumptions in the literature. Section 2.4 gives bounds on the solutions to the Stein equations.
Section 3 contains the covariance identities and inequalities. After re-interpreting Hoeffding’s
identity (4) we obtain general and flexible lower and upper covariance bounds (Proposition 3.1
and Theorem 3.5). We then deduce Klaassen’s bounds (Corollary 3.6) and provide examples for
several concrete distributions, with more examples deferred to the three tables in the supple-
mentary material [38] mentioned above. Finally, a discussion is provided in Section 4, wherein
several examples are treated and connections with other theories are established, for instance,
a Brascamp–Lieb inequality (Corollary 4.1) and Menz and Otto’s asymmetric Brascamp–Lieb
inequality (Corollary 4.3), as well as the link with an eigenfunction problem which can be seen
as an extended Sturm–Liouville problem. For space reasons, technical proofs from Section 2, as
well as tables and figures are provided in the supplementary material [38].

2. Stein differentiation

Stein’s method consists in a collection of techniques for distributional approximation that was
originally developed for normal approximation in [75] and for Poisson approximation in [27];
for expositions see, for example, the books [8,30,64,76] and the review papers [25,69]. Outside
the Gaussian and Poisson frameworks, there exist several nonequivalent general theories allow-
ing to setup Stein’s method for many probability distributions, of which we single out the papers



2056 M. Ernst, G. Reinert and Y. Swan

[26,31,36,78,79] for univariate distributions under analytical assumptions, [6,7] for infinitely di-
visible distributions, [9] for discrete multivariate distributions and [40,46,47,61] for multivariate
densities under diffusive assumptions.

The backbone of the present paper consists in the approach from [57,58,68]. Before introduc-
ing these results, we fix the notation. Let X⊂R and equip it with some σ -algebra A and σ -finite
measure μ. Let X be a random variable on X , with probability measure P

X which is absolutely
continuous with respect to μ; denote by p the corresponding probability density, and its support
by S(p) = {x ∈ X : p(x) > 0}. As usual, L1(p) is the collection of all real valued functions f

such that E|f (X)| < ∞. We sometimes call the expectation under p the p-mean. In order to
make the paper more concrete and readable, we shall exclude point mass distributions (Stein’s
method for point mass is available in [67]) and restrict our attention to distributions satisfying
the following assumption.

Assumption A. The measure μ is either the counting measure on X = Z or the Lebesgue mea-
sure on X = R. If μ is the counting measure, then there exist a < b ∈ Z ∪ {−∞,∞} such that
S(p) = [a, b] ∩Z. If μ is the Lebesgue measure, then there exist a, b ∈ R∪ {−∞,∞} such that
S(p)o = ]a, b[ and S(p) = [a, b]. Moreover, the measure μ is not point mass.

Let � ∈ {−1,0,1}. In the sequel, we shall restrict our attention to the following three derivative-
type operators:

��f (x) =
{

f ′(x), if � = 0;(
f (x + �) − f (x)

)
/� if � ∈ {−1,+1},

with f ′(x) the weak derivative defined Lebesgue almost everywhere, �+1(≡�+) the classical
forward difference and �−1(≡�−) the classical backward difference. Whenever � = 0, we take
μ as the Lebesgue measure and speak of the continuous case; whenever � ∈ {−1,1}, we take
μ as the counting measure and speak of the discrete case. There are two choices of derivatives
in the discrete case, only one in the continuous case. We let dom(��) denote the collection of
functions f : R → R such that ��f (x) exists and is finite μ-almost surely. In the case � = 0,
this corresponds to all absolutely continuous functions; in the case � = ±1 the domain is the
collection of all functions on Z. If f ∈ dom(��) is such that ��f I[a, b] ∈ L1(μ) then, for all c,
d such that a ≤ c ≤ d ≤ b

∫ d

c

��f (x)μ(dx) = f (d + a�) − f (c − b�) (11)

where

a� = I[� = 1] and b� = I[� = −1]. (12)

We stress the fact that the values at c, d are understood as limits if either is infinite.
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2.1. Stein operators and Stein equations

Our first definitions come from [58]. We first define dom(p,��) as the collection of f : R → R

such that fp ∈ dom(��).

Definition 2.1 (Canonical Stein operators). Let f ∈ dom(p,��) and consider the linear op-
erator f �→ T �

p f defined as T �
p f (x) = p(x)−1��(f (x)p(x))p(x) for all x ∈ S(p) and as

T �
p f (x) = 0 for x /∈ S(p). The cases � = 1 and � = −1 provide the forward and backward

Stein operators, denoted by T +
p and T −

p , respectively; the case � = 0 provides the differential
Stein operator denoted by Tp . The operator T �

p is called the canonical (�-)Stein operator of p.

To describe the domain and the range of T �
p , we introduce the following sets of functions:

F (0)(p) = {
f ∈ L1(p) : E[

f (X)
] = 0

};
F (1)

� (p) =
{
f ∈ dom

(
p,��

) : ��(fp)I
[
S(p)

] ∈ L1(μ)

and
∫
S(p)

��(fp)(x)μ(dx) = E
[
T �

p f (X)
] = 0

}
.

We draw the reader’s attention to the fact that the second condition in the definition of F (1)
� (p)

can be rewritten as f (b + a�)p(b + a�) = f (a − b�)p(a − b�) combined example.

Example 2.2. If p(x) = φ(x) = (2π)−1/2e−x2/2 is the standard Gaussian density, then � = 0 and
T 0

p f (x) = f ′(x) − xf (x) is the classical operator for this distribution. The set F (1)
0 (φ) consists

of all functions such f ′(x) − xf (x) ∈ L1(φ) and limx→−∞ f (x)φ(x) = limx→∞ f (x)φ(x).
If p(x) = pλ(x) = e−λλx/x! is the Poisson density on N, then � ∈ {−1,1}; T 1

p f (x) = λf (x +
1)/(x + 1) − f (x) for all x ∈ N and 0 otherwise, and T −1

p f (x) = f (x) − xf (x − 1)/λ for
all x ∈ N and 0 otherwise. Both are equivalent, up to scaling, to the classical operator λf (x +
1) − xf (x) from [27] for this distribution. The set F (1)

1 (pλ) consists of all functions such that

λf (x + 1)/(x + 1) − f (x) ∈ L1(pλ) and limx→∞ f (x)pλ(x) = f (0)pλ(0). Similarly, F (1)
−1 (pλ)

consists of all functions such that f (x) − xf (x − 1)/λ ∈ L1(pλ) and limx→∞ f (x)pλ(x) = 0.

The next lemma, which follows immediately from the definition of T �
p f and of the different

sets of functions, shows why F (1)
� (p) is called the canonical Stein class.

Lemma 2.3 (Canonical Stein class). For f ∈F (1)
� (p), T �

p f ∈F (0)(p).

Crucially for the results in this paper, for all f ∈ dom(��), g ∈ dom(�−�) such that f (·) ×
g(· − �) ∈ dom(��) the operators �� satisfy the product rule

��
(
f (x)g(x − �)

) = (
��f (x)

)
g(x) + f (x)�−�g(x) (13)
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for all � ∈ {−1,0,1}. This product rule leads to an integration by parts (IBP) formula (a.k.a.
Abel-type summation formula) as follows.

Lemma 2.4 (Stein IBP formula – version 1). For all f ∈ dom(p,��), g ∈ dom(�−�) such
that (i) f (·)g(· − �) ∈F (1)

� (p) and (ii) f (·)�−�g(·) ∈ L1(p), we have

E
[(
T �

p f (X)
)
g(X)

] = −E
[
f (X)�−�g(X)

]
. (14)

Proof. Under the stated assumptions, we can apply (13) to get

T �
p

(
f (x)g(x − �)

) = (
T �

p f (x)
)
g(x) + f (x)

(
�−�g(x)

)
(15)

for all x ∈ S(p). Condition (i) in the statement guarantees that the left-hand side (l.h.s.) of (15)
has mean 0, while condition (ii) guarantees that we can separate the expectation of the sum on
the right-hand side (r.h.s.) into the sum of the individual expectations. �

A natural interpretation of (14) is that operator T �
p is, in some sense to be made precise, the

skew-adjoint operator to �−� with respect to the scalar product 〈f,g〉 = E[f (X)g(X)]; this
provides a supplementary justification to the use of the terminology “canonical” for operator
T �

p . We discuss a consequence of this interpretation in Section 4. The conditions under which
Lemma 2.4 holds are all but transparent. We clarify these assumptions in Section 2.3. For more
details on Stein class and operators, we refer to [58] for the construction in an abstract setting,
[57] for the construction in the continuous setting (i.e., � = 0) and [39] for the construction in the
discrete setting (i.e., � ∈ {−1,1}). Multivariate extensions are developed in [68].

The fundamental stepping stone for our theory is an inverse of the canonical operator T �
p

provided in the next definition.

Definition 2.5 (Canonical pseudo inverse Stein operator). Let � ∈ {−1,0,1} and recall the
notation a�, b� from (12). The canonical pseudo-inverse Stein operator L�

p for the operator T �
p is

defined, for h ∈ L1(p), as

L�
ph(x) = 1

p(x)

∫ x−a�

a

(
h(u) −E

[
h(X)

])
p(u)μ(du)

= 1

p(x)

∫ b

x+b�

(
E

[
h(X)

] − h(u)
)
p(u)μ(du) (16)

for all x ∈ S(p), and L�
ph(x) = 0 for all x /∈ S(p).

Equality between the second and third expressions in (16) is justified because h ∈ L1(p) so
that the integral of h(·) −E[h(X)] over the whole support cancels out. For example,

L−
p h(x) = 1

p(x)

x∑
j=a

(
h(j) −E

[
h(X)

])
p(j) = 1

p(x)

b∑
j=x+1

(
E

[
h(X)

] − h(j)
)
p(j).
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Note that L−
p h(b) = 0 but L−

p h(a) = h(a) − E[h(X)]. The denomination pseudo-inverse-Stein

operator for L�
p is justified by the following lemma whose proof is immediate.

Lemma 2.6. For any h ∈ L1(p), L�
ph ∈ F (1)

� (p). Moreover, (i) for all h ∈ L1(p) we have

T �
p L�

ph(x) = h(x) −E[h(X)] at all x ∈ S(p) and (ii) for all f ∈F (1)
� (p) we have L�

pT �
p f (x) =

f (x) − f (a+ − b�)p(a+ − b�)/p(x) = f (x) − f (b− + a�)p(b− + a�)/p(x) at all x ∈ S(p).
The operator L�

p is invertible (with inverse T �
p ) on the subclass of functions in F (0)(p)∩F (1)(p)

which, moreover, satisfy f (b− + a�)p(b− + a�) = f (a+ − b�)p(a+ − b�) = 0.

Starting from (15), we postulate the next definition.

Definition 2.7 (Standardizations of the canonical operator). Fix � ∈ {−1,0,1} and η ∈
L1(p). The η-standardized Stein operator is

A�,η
p g(x) = T �

p

(
L�

pη(·)g(· − �)
)
(x) = (

η(x) −E
[
η(X)

])
g(x) +L�

pη(x)
(
�−�g(x)

)
(17)

acting on the collection F(A�,η
p ) of test functions g such that L�

pη(·)g(· − �) ∈ F (1)
� (p) and

(L�
pη)�−�g ∈ L1(p).

Example 2.8. If p = φ is the standard normal density and η(x) = x, then L0
φη(x) = −1. More

generally, if η(x) = Hk(x)= (−1)kex2/2(dk/dxk)e−x2/2 is the kth Hermite polynomial so that
Hk+1(x) = xHk(x) − H ′

k(x) then L0
ηη(x) = −Hk−1(x). This leads to the family of standardized

Stein operators A0,k
φ g(x) = Hk(x)g(x)−Hk−1(x)g′(x) already considered, for example, in [44].

If p = pλ and η(x) = x, then L+
p η(x) = −x and L−

p η(x) = −λ. This leads to the standardized
operators A+g(x) = (x−λ)g(x)−x�−g(x)= λg(x) − xg(x − 1) and A−g(x) = (x−λ)g(x)−
λ�+g(x)= −λg(x + 1) + xg(x); both are equivalent to the classical operator λg(x +1)−xg(x)

first identified by Chen in [27]. Similarly, as for the Gaussian one could introduce the appropriate
family of orthogonal polynomials (here the Charlier polynomials) and propose an entire family
of operators; we refer to [44] for an overview.

Remark 2.9. The conditions appearing in the definition of F(A�,η
p ) are tailored to ensure

that all identities and manipulations follow immediately. For instance, the requirement that
L�

pη(·)g(· − �) ∈ F (1)
� (p) in the definition of F(A�,η

p ) guarantees that the resulting functions

A�,η
p g(x) have p-mean 0 and the condition (L�

pη)�−�g ∈ L1(p) guarantees that the expecta-
tions of the individual summands on the r.h.s. of (17) exist. Again, our assumptions are not
transparent; we discuss them in detail in Section 2.3.

The final ingredient for Stein differentiation is the Stein equation:
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Definition 2.10 (Stein equation). Fix � ∈ {−1,0,1} and η ∈ L1(p). For h ∈ L1(p), the A�,η
p -

Stein equation for h is the equation A�,η
p g(x) = h(x) −E[h(X)], x ∈ S(p), that is,

(
η(x) −E

[
η(X)

])
g(x) +L�

pη(x)
(
�−�g(x)

) = h(x) −E
[
h(X)

]
, x ∈ S(p). (18)

A solution to the Stein equation is any function g ∈F(A�,η
p ) which satisfies (18) for all x ∈ S(p).

Our notation lead immediately to the next result.

Lemma 2.11 (Solution to the Stein equation). Fix η ∈ L1(p). The Stein equation (18) for
h ∈ L1(p) is solved by

g
p,�,η
h (x) = L�

ph(x + �)

L�
pη(x + �)

(19)

with the convention that g
p,�,η
h (x) = 0 for all x + � outside of S(p).

Proof. With g = g
p,�,η
h , by construction, g ∈F(A�,η

p ), and

A�,η
p g(x) = T �

p

(
L�

pη(·)g(· − �)
)
(x)

= T �
p

(
L�

pη(·)L
�
ph(·)

L�
pη(·)

)
(x)

= T �
p

(
L�

ph(·))(x)

= h(x) −E
[
h(X)

]
using Lemma 2.6 for the last step. Hence (18) is satisfied for all x ∈ S(p). �

When the context is clear, then we drop the superscripts and the subscript in g of (19). In the
next two examples and beyond, the notation Id refers to the identity function x → Id(x) = x.

Example 2.12 (Binomial distribution). Let 0 < θ < 1 and p(x) = ( n
x

)
θx(1 − θ)n−x be the

binomial density with parameters (n, θ) and S(p) = [0, n] ∩N. Stein’s method for the binomial
distribution was first developed in [37] using �−. We fix η(x) = x − nθ .

For � = 1, the class F (1)
+ (p) consists of functions f : Z → R which are bounded on S(p) and

f (0) = 0, and L+
bin(n,θ)η(x) = −(1 − θ)x, leading to

A+,Id
bin(n,θ)g(x) = (x − nθ)g(x) − (1 − θ)x�−g(x) (20)
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with corresponding class F(A+,Id
bin(n,θ)) which contains all functions g : Z → R. The solution to

the A+,Id
bin(n,θ)-Stein equation (see (18)) is g+(n) = 0 and

g+(x) = −1

(1 − θ)(x + 1)p(x + 1)

x∑
j=0

(
h(j) −E

[
h(X)

])
p(j) for all 0 ≤ x ≤ n − 1.

For � = −1, the class F (1)
− (p) consists of functions f : Z → R which are bounded on S(p)

and such that f (n) = 0, and L−
bin(n,θ)η(x) = −θ(n − x), leading to

A−,Id
bin(n,θ)g(x) = (x − nθ)g(x) − θ(n − x)�+g(x)

on the same class as (20). The solution to the A−,Id
bin(n,θ)-Stein equation is g−(0) = 0 and

g−(x) = −1

θ(n − (x − 1))p(x − 1)

x−1∑
j=0

(
h(j) −E

[
h(X)

])
p(j) for all 1 ≤ x ≤ n.

The function −g− is studied in [37] where bounds on ‖�−g−‖ are provided (see equation (10)
in that paper); see also Section 2.4 where bounds on ‖g−‖ are provided.

Example 2.13 (Beta distribution). Let p(x) = xα−1(1 − x)β−1/B(α,β) be the beta density
with parameters (α,β) and S(p) = (0,1). Stein’s method for the beta distribution was developed
in [36,45] using the Stein operator Af (x) = x(1 − x)f ′(x) + (α(1 − x) − βx)f (x). In our
notation, we have � = 0 and F (1)

0 (p) consists of functions f : R → R such that f (0+)p(0+) =
f (1−)p(1−) and |(fp)′| is Lebesgue integrable on [0,1]. Fixing η(x) = x − α/(α + β) gives
Lbeta(α,β)η(x) = −x(1 − x)/(α + β) leading to the operator

AId
Beta(α,β)g(x) =

(
x − α

α + β

)
g(x) − x(1 − x)

α + β
g′(x)

with domain F(AId
Beta(α,β)) the set of differentiable functions g : R→R such that x(1−x)g(x) ∈

F (1)
0 (p) and x(1 − x)g′(x) ∈ L1(p). The solution to the AId

Beta(α,β)
-Stein equation is

g(x) = −(α + β)

x(1 − x)p(x)

∫ x

0

(
h(u) −E

[
h(X)

])
p(u)du, x ∈ (0,1).

The operator AId
Beta(α,β)f is, up to multiplication by α + β , the classical Stein operator Af for

the beta density; see [36,45] for details and bounds on solutions and their derivatives. See also
Section 2.4 where bounds on ‖g‖ are provided.

In order to propose a more general example, we recall the concept of a Stein kernel, here
extended to continuous and discrete distributions alike.
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Definition 2.14 (The Stein kernel). Let X ∼ p have finite mean. The (�-)Stein kernel of X (or
of p) is the function

τ �
p(x) = −L�

p(Id)(x).

Metonymously, we refer to the random variable τ �
p(X) as the (�-)Stein kernel of X.

Remark 2.15. The function τ �
p(·) is studied in detail for � = 0 in [76], Lecture VI. This function

is particularly useful for Pearson (and discrete Pearson a.k.a. Ord) distributions which are charac-
terized by the fact that their Stein kernel τ �

p is a second degree polynomial, see Example 3.7. For
more on this topic, we also refer to [39] as well as [33,41,42] wherein important contributions to
the theory of Stein kernels are provided in a multivariate setting.

The next example gives some (�-)Stein kernels, exploiting the fact that if the mean of X is ν,
then L�

p(Id)(x) = L�
p(Id − ν)(x).

Example 2.16. If X ∼ Bin(n, θ), then using η(x) = x − nθ , Example 2.12 gives τ+
bin(n,θ)(x) =

(1 − θ)x and τ−
bin(n,θ)(x) = θ(n − x). If X ∼ Beta(α,β) then Example 2.13 with η(x) = x −

α/(α + β) gives τ 0
Beta(α,β)

(x) = x(1 − x)/(α + β).

Example 2.17 (A general example). Let p satisfy Assumption A and suppose that it has finite
mean ν. Fixing η(x) = x − ν, operator (17) becomes

Aτ�
p

p g(x) = (x − ν)g(x) − τ �
p(x)�−�g(x)

with corresponding class F(Aτ�
p

p ) which contains all functions g : R → R such that

τ �
p(·)g(· − �) ∈ F (1)

� (p) and τ �
p�−�g ∈ L1(p). Again, we stress that such conditions are clar-

ified in Section 2.3. Using Lemma 2.11, the solution to the Aτp
p Stein equation is

g
p,�,h

Id (x) = −L�
ph(x+�)

τ �
p(x+�)

.

Bounds on ‖g‖ are provided in Section 2.3. Stein’s method based on Aτ�
p

p is already available in
several important subcases, for example, in [36,54,74] for continuous distributions.

The construction is tailored to ensure that all operators have mean 0 over the entire classes
of functions on which they are defined. We immediately deduce the following family of Stein
integration by parts formulas.

Lemma 2.18 (Stein IBP formula – version 2). Let X ∼ p. Then

E
[−{

L�
pf (X)

}
�−�g(X)

] = E
[(

f (X)−E
[
f (X)

])
g(X)

]
(21)



First-order covariance inequalities via Stein’s method 2063

for all f ∈ L1(p), g ∈ dom(�−�) such that L�
pf (·)g(· − �) ∈ F (1)

� (p) and L�
pf (·)�−�g(·) ∈

L1(p).

Proof. Identity (21) follows directly from the Stein product rule in [58], Theorem 3.24, or by
using the fact that expectations of the operators in (17) are equal to 0. �

For our future developments, it is important to note that in Lemma 2.18 the test functions f and
g do not play a symmetric role. If g ∈ L1(p), then the right-hand side of (21) is the covariance
Cov(f (X), g(X)). Similarly, as for Lemma 2.4, the conditions under which Lemma 2.18 applies
are not transparent in their present form. In Section 2.3, various explicit sets of conditions are
provided under which the IBP (21) is applicable.

2.2. Representations of the inverse Stein operator

This section contains the first main results of the paper, namely probabilistic representations for
this operator. We start with a simple rewriting of L�

p . Given � ∈ {−1,0,1}, recall the notation
a� = I[� = 1] and define

χ�(x, y) = I[x ≤ y − a�]. (22)

Such generalized indicator functions particularize, in the three cases that interest us, to
χ0(x, y) = I[x ≤ y] (� = 0), χ−(x, y) = I[x ≤ y] (� = −1) and χ+(x, y) = I[x < y] (� = 1).
Their properties lead to some form of “calculus” as follows.

Lemma 2.19 (Chi calculation rules). The function χ�(x, y) is nonincreasing in x and nonde-
creasing in y. For all x, y, we have

χ�(x, y) + χ−�(y, x) = 1 + I[� = 0]I[x = y] and (23)

χ�(u, y)χ�(v, y) = χ�
(
max(u, v), y

)
and

χ�(x,u)χ�(x, v) = χ�
(
x,min(u, v)

)
.

(24)

Let p with support S(p) satisfy Assumption A. Then for any f ∈ L1(p), with (16),

L�
pf (x) = 1

p(x)
E

[
χ�(X,x)

(
f (X) −E

[
f (X)

])]

= 1

p(x)
E

[(
χ�(X,x) −E

[
χ�(X,x)

])(
f (X) −E

[
f (X)

])]
. (25)

The function

��
p(u, x, v) = χ�(u, x)χ−�(x, v)

p(x)
, x ∈ S(p) (26)

set to be 0 for x /∈ S(p), is used in the following representation for the Stein inverse operator.
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Lemma 2.20 (Representation formula I). Let X, X1, X2 be independent copies of X ∼ p with
support S(p). Then, for all f ∈ L1(p) we have

−L�
pf (x) = E

[(
f (X2) − f (X1)

)
��

p(X1, x,X2)
]
. (27)

Proof. The L1(p) condition on f suffices for the expectation on the r.h.s. of (27) to be finite for
all x ∈ S(p). Suppose without loss of generality that E[f (X)] = 0. Using that X1, X2 are i.i.d.,
we reap

E
[(

f (X2) − f (X1)
)
χ�(X1, x)χ−�(x,X2)

]
= E

[
χ�(X1, x)

]
E

[
f (X2)χ

−�(x,X2)
] −E

[
f (X1)χ

�(X1, x)
]
E

[
χ−�(x,X2)

]
= E

[
χ�(X1, x)

]
E

[
f (X2)

(
1 − χ�(X2, x)

)] −E
[
f (X1)χ

�(X1, x)
]
E

[
χ−�(x,X2)

]
= −E

[
f (X)χ�(X,x)

](
E

[
χ�(X,x)

] +E
[
χ−�(x,X)

])
,

where in the third line we used the fact that E[f (X)I[� = 0]I[X = x]] = 0 under the stated
assumptions. For the same reasons, we have E[χ�(X,x) + χ−�(x,X)] = 1 for all x ∈ X and all
� ∈ {−1,0,1}. The conclusion follows by recalling (25). �

The function defined in (26) allows to perform “probabilistic integration” as follows: if f ∈
dom(�−�) is such that (�−�f ) is integrable on [x1, x2] ∩ S(p) then

f (x2) − f (x1) = E
[
��

p(x1,X,x2)�
−�f (X)

] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ x2

x1

f ′(u)du (� = 0)

x2−1∑
j=x1

�+f (j) (� = −1)

x2∑
j=x1+1

�−f (j) (� = 1)

(28)

for all x1 < x2 ∈ S(p). If, furthermore, f ∈ L1(p) then (by a conditioning argument)

E
[(

f (X2) − f (X1)
)
I[X1 < X2]

] = E
[
��

p(X1,X,X2)�
−�f (X)

]
.

Equation (28) leads to the next representation formula for the inverse Stein operator.

Lemma 2.21 (Representation formula II). Let X ∼ p. Define the kernel Kp on S(p) × S(p)

by

K�
p

(
x, x′) = E

[
χ�(X,x)χ�

(
X,x′)] −E

[
χ�(X,x)

]
E

[
χ�

(
X,x′)]. (29)

Then K�
p(x, x′) is symmetric and positive. Moreover, for all f ∈ dom(�−�) ∩ L1(p),

−L�
pf (x) = E

[
K�

p(X,x)

p(X)p(x)
�−�f (X)

]
. (30)
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Proof. Symmetry of K�
p is immediate. Applying first (24) and then (23),

K�
p

(
x, x′) = E

[
χ�

(
X,min

(
x, x′))](1 −E

[
χ�

(
X,max

(
x, x′))])

= E
[
χ�

(
X,min

(
x, x′))]

E
[
χ−�

(
max

(
x, x′),X)]

(31)

which is necessarily positive. To prove (30), we insert (28) into (27), to obtain

−L�
pf (x) = E

[
�−�f

(
X′)��

p

(
X1,X

′,X2
)
��

p(X1, x,X2)
]

= E
[
�−�f

(
X′)

E
[
��

p

(
X1,X

′,X2
)
��

p(X1, x,X2)|X′]].
For all x, x′ ∈ S(p), by (24),

E
[
��

p(X1, x,X2)�
�
p

(
X1, x

′,X2
)]

= 1

p(x)p(x ′)
E

[
χ�(X,x)χ�

(
X,x′)]

E
[
χ−�(x,X)χ−�

(
x′,X

)]

= 1

p(x)p(x ′)
(
E

[
χ�

(
X,min

(
x, x′))]

E
[
χ−�

(
max

(
x, x′),X)])

.

Using (31), we recognize the kernel K�
p(x, x′) in the numerator, and identity (30) follows. �

Example 2.22. Representations (27) and (30) can easily be applied to obtain representations for
the Stein kernel τ �

p(x):

τ �
p(x) = −L�

p(Id)(x)

= E
[
(X2 − X1)�

�
p(X1, x,X2)

] = E

[
K�

p(X,x)

p(X)p(x)

]
.

In particular, the Stein kernel is positive on S(p).

Identity (27) seems to be new, although it is present in nonexplicit form in [26], equation
(4.16). Representation (30) is, in the continuous � = 0 case, already available in [71]. The kernel
K�

p(x, x′) is a classical object in the theory of covariance representations and inequalities; an
early appearance is attributed by [66] to [50] (see [49], pp. 57–109, for an English translation).
The perhaps not very surprising extension to the discrete case is, to the best of our knowledge,
new.

As a first result from our set-up, (30) applied to the function f (x) = T �
p 1(x) immediately gives

the following (see the supplementary material [38] for a proof).

Proposition 2.23 (Menz–Otto formula). Suppose that the constant function 1 belongs to
F (1)

� (p), that −�−�T �
p 1(x) > 0 for almost all x ∈ S(p) and �−�(T �

p 1) ∈ L1(μ). Then, for



2066 M. Ernst, G. Reinert and Y. Swan

every x′ ∈ S(p), the function

p�
x′(x) = K�

p(x, x′)
p(x′)

(−�−�T �
p 1(x)

)
(32)

is a density on S(p) with respect to μ.

Remark 2.24. If K�
p(x, x)/p(x) is bounded, then the assumptions in Proposition 2.23 are satis-

fied as soon as −�−�T �
p 1 ∈ L1(μ). The proposition thus applies when � = 0 and p(x) = e−H(x)

with H a strictly convex function such that limx→±∞ H ′(x) = 0. This puts us in the context
studied by [62] and formula (32) is equivalent to their [62], equation (14); we return to this in
Section 3.

The next proposition gives some properties of K�
p(x, x′).

Proposition 2.25. (i) K�
p(x, x′) ≤ K�

p(min(x, x′),min(x, x′)) for all x, x′ ∈ S(p). (ii) If

E[χ�(X,x)]/p(x) is nondecreasing, then the function x �→ K�
p(x, x′)/p(x) is non-decreasing

for x < x′. (iii) If E[χ−�(x,X)]/p(x) is nonincreasing, then the function x �→ K�
p(x, x′)/p(x)

is nonincreasing for x > x′.

Figures 1 and 2 in the supplementary material [38] display the functions x �→ K�
p(x, x′)/p(x)

(for various values of x′) and x �→ K�
p(x, x)/p(x) for the standard normal and several parameter

choices in beta, gamma, binomial, Poisson and hypergeometric distributions.

Example 2.26. The following facts are easy to prove:

1. If p(x) is the standard normal distribution, then K0
p(x, x)/p(x) behaves as 1/|x| for large

|x|; see Figure 2(a).
2. If p(x) is gamma, then K0

p(x, x)/p(x) behaves as a constant for large x; see Figure 2(c).

3. The function x �→ K0
p(x, x)/p(x) is not in L1(p) for p a Cauchy distribution.

4. If p is strictly-log concave, then K�
p(x, x)/p(x) is bounded.

2.3. Sufficient conditions and integrability

As anticipated, we now study the conditions under which the IBP Lemmas 2.4 and 2.18 hold.
All proofs are technical manipulations of basic calculus and relegated to Section 1 in the supple-
mentary material.

We start by the decryption of the conditions for Lemma 2.4. Recall the notation a� and b� from
(12). Furthermore, if � = 0 we write f (a+) = limx→a,x>a f (x) and f (b−) = limx→b,x<b f (x).
In the case that a = −∞ or b = ∞, for � ∈ {−1,0,1}, we write f (−∞+) = limx→−∞ f (x) and
f (∞−) = limx→∞ f (x). To simplify notation, if � ∈ {−1,1} and a 	= −∞, we write f (a+) =
f (a), and similarly, if b 	= ∞, f (b−) = f (b).
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Proposition 2.27 (Sufficient conditions for IBP – version 1). Let f ∈ dom(p,��) and g ∈
dom(�−�). In order for (14) to hold, it suffices that they jointly satisfy

(
T �

p f
)
g and f

(
�−�g

) ∈ L1(p) (33)

f
(
b− + a�

)
g
(
b− + a� − �

)
p
(
b− + a�

) = f
(
a+ − b�

)
g
(
a+ − b� − �

)
p
(
a+ − b�

)
. (34)

We now derive (almost) necessary and sufficient conditions for (21) to hold.

Proposition 2.28 (Sufficient conditions for IBP – version 2). Let g ∈ dom(�−�). In order for
(21) to hold, it is necessary and sufficient that they jointly satisfy

f,g and fg ∈ L1(p), (35)

L�
pf

(
�−�g

) ∈ L1(p) (36)

g
(
b− + a� − �

)
p
(
b− + a�

)
L�

pf
(
b− + a�

) = g
(
a+ − b� − �

)
p
(
a+ − b�

)
L�

pf
(
a+ − b�

)
. (37)

Requirement (35) is natural and condition (37) is mild as it is satisfied as soon as g and/or
f are well behaved at the edges of the support. We specialize condition (37) further in our next
result.

Proposition 2.29. Let f , g and fg ∈ L1(p). If g ∈ dom(�−�) is of bounded variation and
satisfies the following two conditions:

1. g(a+ − b� − �)P(X ≤ a+ − a� − b�) = 0 and g(b− + a� − �)P(X ≥ b− + a� + b�) = 0,
2. g(a+ − b� − �)E[|f (X)|χ�(X ≤ a+ − b�)] = 0 and g(b− + a� − �)E[|f (X)|χ−�(b− +

a�,X)] = 0,

then (37) holds. In particular, if f is bounded or in L2(p), then the condition 2 above is implied
by Condition 1.

Remark 2.30. The assumptions in Lemma 2.29 are related to those in [71] in the case � = 0.
The main difference to these classical assumptions is that Lemma 2.29 only imposes conditions
on one of the functions. We stress that there is a certain degree of redundancy in the items 1 and
2 together with the assumption that g ∈ L1(p) and is of bounded variation; the statement could
be shortened at the loss of readability.

2.4. The inverse Stein operator

We conclude this section by exploring easy consequences of the representations from Section 2.2.
These results are also of independent interest in Stein’s method.
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Lemma 2.31. If f,L�
pf (X) ∈ L1(p), then

E
[−L�

pf (X)
] = E

[
(X2 − X1)

+(
f (X2) − f (X1)

)]
= 1

2
E

[
(X2 − X1)

(
f (X2) − f (X1)

)]
(38)

where (·)+ denotes the positive part of (·). In particular, if the conditions of Lemma 2.18 are
satisfied with f (x) = g(x) = Id, then E[τ �

p(X)] = Var(X).

Proof. Representation (27) gives E[−L�
pf (X)] = E[(f (X2) − f (X1))�

�
p(X1,X,X2)]. Using

(28) with f (x) = x, we have E[��
p(x1,X,x2)] = (x2 − x1)

+. Hence, after conditioning with
respect to X1, X2, the first equality in (38) follows. The second equality follows by symmetry.
The second claim is immediate under the stated assumptions. �

Remark 2.32. Once again, our assumptions are minimal but not transparent. It is easy to spell
out these conditions explicitly for any specific target. For instance, if X has bounded support or
support R then finite variance suffices.

Proposition 2.33. Suppose that all test functions satisfy the conditions in Lemma 2.18. Let
‖f ‖S(p),∞ = supx∈S(p) |f (x)|.

1. If f is monotone, then L�
pf (x) does not change sign.

2. (Uniform bounds Stein bounds) Consider, for h and η in L1(p) the function

g
p,�,η
h (x) = L�

ph(x + �)

L�
pη(x + �)

defined in (19) which solves the η-Stein equation (18) for h. If η is monotone and |h(x) −
h(y)| ≤ k|η(x) − η(y)| for all x, y ∈ S(p), then

∥∥g
p,�,η
h

∥∥
S(p),∞ ≤ k.

In particular, if h ∈ L1(p) is Lipschitz continuous with Lipschitz constant 1 then the above
applies with η(x) = x, and ‖gp,0,Id

h ‖S(p),∞ ≤ 1.
3. (Nonuniform bounds Stein bounds) For all x ∈ S(p),

∣∣L�
pf (x)

∣∣ ≤ 2‖f ‖S(p),∞
E[χ�(X1, x)]E[χ−�(x,X2)]

p(x)
. (39)

Example 2.34. If p = φ is the standard Gaussian with cdf �, then � = 0 and the third bound in
Proposition 2.33 reduces to 2||f ||∞�(x)(1 − �(x))/φ(x). The ratio �(x)(1 − �(x))/φ(x) is
closely related to Mill’s ratio of the standard normal law. The study of such a function is classical
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and much is known. For instance, we can apply [10], Theorem 2.3, to get

1√
x2 + 4 + x

≤ �(x)(1 − �(x))

φ(x)
≤ 4√

x2 + 8 + 3x
(40)

for all x ≥ 0. Moreover, �(x)(1 − �(x))/φ(x) ≤ �(0)(1 − �(0))/φ(0) = 1/2
√

π/2 ≈ 0.626.
In particular, Proposition 2.33 recovers the well-known bound ‖L�

pf ‖∞ ≤ √
π/2‖f ‖∞; see, for

example, [64], Theorem 3.3.1.

3. Covariance identities and inequalities

We start with an easy lower bound inequality, which follows immediately from Lemma 2.4.

Proposition 3.1 (Cramér–Rao type bound). Let g ∈ L2(p). For any f ∈ F (1)
� (p) such that

T �
p f ∈ L2(p) and the assumptions of Lemma 2.4 are satisfied:

Var
[
g(X)

] ≥ E[f (X)(�−�g(X))]2

E[(T �
p f (X))2] (41)

with equality if and only if there exist α, β real numbers such that g(x) = αT �
p f (x) + β for all

x ∈ S(p).

Proof. The lower bound (41) follows from the fact that T �
p f ∈ F (0)(p) for all f ∈ F (1)

� (p) by
Lemma 2.3. Therefore, from (14), we have

{
E

[
f (X)

(
�−�g(X)

)]}2 = {
E

[(
T �

p f (X)
)
g(X)

]}2

= {
E

[(
T �

p f (X)
)(

g(X) −E
[
g(X)

])]}2

≤ E
[(
T �

p f (X)
)2]Var

[
g(X)

]
by the Cauchy–Schwarz inequality. �

To obtain upper bounds, we start with an easy consequence of our framework.

Corollary 3.2 (First-order covariance identities). For all f , g that jointly satisfy the assump-
tions of Lemma 2.18, we have

Cov
[
f (X),g(X)

] = E

[
�−�f (X)

K�
p(X,X′)

p(X)p(X′)
�−�g

(
X′)]. (42)

Moreover, if choice f = Id is allowed, then

Cov
[
X,g(X)

] = E
[
τ �
p(X)�−�g(X)

]
. (43)
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Remark 3.3. Identity (42) is provided in [62] (see their equation (11)) in the case � = 0 for a
log-concave density. Some of the history of this identity, including the connection with a classical
identity of Hoeffding [50], is provided in [72], Section 2. The earliest version of the same identity
(still for � = 0) we have found in [34], along with applications to measures of correlation as well
as further references. A similar identity is provided in [62], without explicit conditions; a clear
statement is given in [72], Corollary 2.2, where the identity is proved for absolutely continuous
f ∈ Lr and g ∈ Ls with conjugate exponents. Our approach shows that it suffices to impose
regularity on one of the functions for the identity to hold.

Proof. Let f̄ (x) = f (x) − E[f (X)]. Note that ��f̄ = ��f . To obtain (42), we start from (21)
and note that if f , g satisfy the assumptions of Lemma 2.18, then

Cov
[
f (X),g(X)

] = E
[−{

L�
pf (X)

}
�−�g(X)

]
. (44)

From this equation, (43) follows immediately. Applying (30), we obtain

Cov
[
f (X),g(X)

] = E

[
E

[
Kp(X′,X)

p(X′)p(X)
�−�f

(
X′)∣∣∣X]

�−�g(X)

]

which gives the claim after removing the conditioning. �

Example 3.4. Example 2.16 and identity (43) give the following covariance identities:

• Binomial distribution: For all functions g : Z →R that are bounded on [0, n],
Cov

[
X,g(X)

] = E
[
(1 − θ)X�−g(X)

] = θE
[
(n − X)�+g(X)

]
.

Combining the two identities, we also arrive at

Cov
[
X,g(X)

] = Var[X]E[∇bin(n,θ)g(X)
]

with ∇bin(n,θ)g(x) = x/n�−g(x) + (1 − x/n)�+g(x) the gradient from [48].
• Beta distribution: For all absolutely continuous g such that E[|X(1 − X)g′(X)|] < ∞,

Cov
[
X,g(X)

] = 1

α + β
E

[
X(1 − X)g′(X)

]
.

It is of interest to work as in [52] to obtain a corresponding upper bound, which would pro-
vide some “weighted Poincaré inequality” such as those described in [71]. The representation
formulae (42) turns out to simplify the work considerably.

Theorem 3.5. Fix h ∈ L1(p) a decreasing function. For all f , g which satisfy the assumptions
of Lemma 2.18, we have

∣∣Cov
[
f (X),g(X)

]∣∣ ≤
√
E

[(
�−�f (X)

)2 −L�
ph(X)

�−�h(X)

]√
E

[(
�−�g(X)

)2 −L�
ph(X)

�−�h(X)

]
(45)
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with equality if and only if there exist αi, i = 1, . . . ,4 real numbers such that f (x) = α1h(x)+α2
and g(x) = α3h(x) + α4 for all x ∈ S(p).

Proof. We simply apply (42) and the Cauchy–Schwarz inequality to obtain

∣∣Cov
[
f (X),g(X)

]∣∣ =
∣∣∣∣E

[
�−�f (X)

K�
p(X,X′)

p(X)p(X′)
�−�g

(
X′)]∣∣∣∣

=
∣∣∣∣E

[{
�−�f (X)√−�−�h(X)

√
− K�

p(X,X′)
p(X)p(X′)

�−�h
(
X′)}

×
{

�−�g(X′)√−�−�h(X′)

√
− K�

p(X,X′)
p(X)p(X′)

�−�h(X)

}]∣∣∣∣
≤

√
E

[
(�−�f (X))2

�−�h(X)

K�
p(X,X′)

p(X)p(X′)
�−�h

(
X′)]

×
√
E

[
(�−�g(X))2

�−�h(X)

K�
p(X,X′)

p(X)p(X′)
�−�h

(
X′)];

using (30) leads to the inequality.
The only part of the claim that remains to be proved concerns the saturation condition in the

inequality. This follows from the Cauchy–Schwarz inequality, which is an equality if and only
if �−�f (x)/�−�h(x) ∝ �−�g(x′)/�−�h(x′) is constant throughout S(p). This is only possible
under the stated condition. �

Combining Proposition 3.1 and Theorem 3.5 (applied with f = g), we arrive at the following
result (applied to a smaller class of functions h) which, as we shall argue below, share a similar
flavor to the upper and lower bounds from Theorem 1.1.

Corollary 3.6 (Klaassen bounds, revisited). For any decreasing function h ∈ L2(p) and all g

such that Lemma 2.18 applies (with f = g), we have

E[−L�
ph(X)(�−�g(X))]2

Var(h(X))
≤ Var

[
g(X)

]

≤ E

[(
�−�g(X)

)2 −L�
ph(X)

�−�h(X)

]
. (46)

Equality in the upper bound holds if and only if there exists constants α, β such that g(x) =
αh(x) + β .

Proof. For the lower bound, we apply Proposition 3.1 with f (x) = −L�
ph(x) so that T �

p c(x) =
h(x) − −E[h(X)]. For the upper bound, we use Theorem 3.5 with f = g. �
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Example 3.7 (Pearson and Ord families). Tables 1, 2 and 3 in the supplementary material [38]
present the results for distributions which belong to the Pearson and Ord families of distributions.
A random variable X ∼ p belongs to the integrated Pearson family if X is absolutely continuous
and there exist δ,β, γ ∈R not all equal to 0 such that τ �

p(x)(:= −L�
p(Id)) = δx2 +βx +γ for all

x ∈ S(p). Similarly, X ∼ p belongs to the cumulative Ord family if X is discrete and there exist
δ,β, γ ∈ R not all equal to 0 such that τ �

p(x)(:= −L�
p(Id)) = δx2 + βx + γ for all x ∈ S(p).

The bounds for these distributions generalize the results, for example, from [3]. For Integrated
Pearson distributions, higher order bounds (i.e., bounds in which higher order derivatives of the
test functions are considered) are given in [1]. For the cumulative Ord family, we refer to [2] for
a detailed study of the associated system of orthogonal polynomials.

Remark 3.8 (About the connection with Klaassen’s bounds). The bounds to clarify the con-
nection between the bounds in Corollary 3.6 and those from Theorem 1.1, we follow [52] and
restrict our attention to kernels of the form

ρ+
ζ (x, y) = I[ζ < y ≤ x] − I[x < y ≤ ζ ] and

ρ−
ζ (x, y) = I[ζ ≤ y < x] − I[x ≤ y < ζ ]

for some ζ ∈R. In our notation, for � ∈ {−1,0,1},
ρ�

ζ (x, y) = χ�(ζ, y)χ−�(y, x) − χ�(x, y)χ−�(y, ζ ).

We first tackle the relation between the main arguments of the bounds, namely G(x) and g(x).
Given a measurable function g, we mimic the statement of Theorem 1.1 and introduce the gen-
eralized primitive G(x) = G�

ζ (x) := ∫
ρ�

ζ (x, y)g(y)μ(dy) + c with c arbitrary, fixed w.l.o.g. to
0. Again in our notation, this becomes

G�
ζ (x) =

∫ x−b�

ζ+a�

g(y)μ(dy)I[ζ < x] −
∫ ζ−b�

x+a�

g(y)μ(dy)I[x < ζ ].

By construction, �−�G�
ζ (x) = g(x) for all ζ and all �, as expected. Nevertheless, in order for

G�
ζ (x) to be well-defined, strong (joint) assumptions on g and ζ are required; for instance, if

g(x) = 1 then ζ must be finite and G�
ζ,c(x) = x − ζ while if g(x) has p-mean 0 then the values

ζ = ±∞ are allowed.
To connect the lower bound (7) and the lower bound of (46), let k ∈ L2(p) have p-mean 0.

Then

E
[
k(X)ρ�

ζ (X,x)
] = E

[
k(X)χ−�(x,X)

]
χ�(ζ, x) −E

[
k(X)χ�(X,x)

]
χ−�(x, ζ )

= E
[
k(X)

]
χ�(ζ, x) −E

[
k(X)χ�(X,x)

](
χ�(ζ, x) + χ−�(x, ζ )

)
= −E

[
k(X)χ�(X,x)

]
so that K(x) = p(x)−1

∫
ρ�

ζ (z, x)k(z)p(z)μ(dz) = −L�
pk(x), and thus (7) follows from the

lower bound of (46).
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Finally, we consider the upper bounds (6) and (46). Let H(x) = H�
ζ (x) be a generalized prim-

itive of some nonnegative function h. The same manipulations as above lead to

1

p(x)

∫
ρ�

ζ (z, x)H(z)p(z)μ(dz) = −L�
ph(x) − E[H(X)]

p(x)

(
P(x − a�) − χ�(ζ, x)

)
.

If, following [52], we choose ζ in such a way that E[H(X)] = 0 (this is equivalent to requiring∫ b

ζ+a�
h(y)(1 − P(y + b�))μ(dy) = ∫ ζ−b�

a
h(y)(P (y − a�))μ(dy)) then we see that the upper

bound in (46) is equivalent to (6).
Of course, there is some gain in generality at allowing for a general kernel ρ as in Theorem 1.1,

though this comes at the expense of readability: given a positive function h, understanding the
form of function H is actually nontrivial and our result illuminates Klaassen’s discovery by
providing the connection with Stein characterizations.

4. About the weights

The freedom of choice in the test functions h appearing in the bounds invite a study of the impact
of the choice of h on the validity and quality of the resulting inequalities.

4.1. Score function and a Brascamp–Lieb inequality

The form of the lower bound in Proposition 3.1 encourages the choice f (x) = 1. This is
only permitted if the constant function 1 ∈ F (1)

� (p) and E[(T �
p 1(X))2] < ∞; these are two

strong assumptions which exclude some natural targets such as, for example, the exponential
or beta distributions. If this choice is permitted, then we reap the lower bound Var[g(X)] ≥
(I �(p))−1

E[�−�g(X)] with I �(p) = [(T �
p 1(X))2].

The function T �
p 1(x) = ��(p(x))/p(x) is some form of generalized score function and I �(p)

a generalized Fisher information. Indeed, if � = 0 and X ∼ p is absolutely continuous, then
T �

p 1(x) = (logp(x))′ is exactly the (location) score function of p and I (0)(p) is none other

than the (location) Fisher information of p. More generally, we note that if 1 ∈ F (1)
� (p) then

E[T �
p 1(X)] = 0 and, by Lemma 2.4, it satisfies

E
[
T �

p 1(X)g(X)
] = −E

[
�−�g(X)

]
for all appropriate g; this further reinforces the analogy.

The corresponding upper bound from (45) is obtained for h(x) = T �
p 1(x) in (46). Suppose that

p(b− + a�) = p(a+ − b�) = 0. By construction, L�
ph(x) = IS(p)(x). If we can further suppose

that T �
p 1(x) is a decreasing function then

∣∣Cov
[
f (X),g(X)

]∣∣ ≤
√
E

[
(�−�f (X))2

−�−�T �
p 1(X)

]√
E

[
(�−�g(X))2

−�−�T �
p 1(X)

]
.

Taking g = f , we deduce the following result.
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Corollary 4.1 (Brascamp–Lieb inequality). Under the same conditions as Proposition 2.23,
we have

E[(�−�g(X))]2

E[(T �
p 1(X))2] ≤ Var

[
g(X)

] ≤ E

[
(�−�g(X))2

−�−�T �
p 1(X)

]
(47)

for all g such that T �
p 1, g satisfy together the assumptions of Lemma 2.18.

Remark 4.2. We refer to (47) as a “Brascamp–Lieb inequality” because of a result from [15]
where it is shown that, for a given density p proportional to e−V with V strictly convex on R and
V ′ ∈ L2(p), we have Var[g(X)] ≤ E[(g′(X))2/V ′′(X)] where the constant 1 is optimal. Taking
� = 0 in (47), one recognizes −�−�T �

p 1 = V ′′ so that the upper bound in (47) reduces to this
Brascamp–Lieb inequality.

We conclude with a generalized version of the elegant inequality due to [62], Lemma 2.11, in
the form stated in [23], equation (1.5).

Corollary 4.3 (Asymmetric Brascamp–Lieb inequality). Under the same conditions as above,
if −�−�T �

p 1 ∈ L1(μ) then for all f , g in L2(p),

∣∣Cov
[
f (X),g(X)

]∣∣ ≤ sup
x

∣∣∣∣ �−�f (x)

�−�T �
p 1(x)

∣∣∣∣E[∣∣�−�g(X)
∣∣]. (48)

Proof. Under the assumptions, we may apply (42) to get

∣∣Cov
[
f (X),g(X)

]∣∣ ≤ E

[ |�−�f (X)|
−�−�T �

p 1(X)

∣∣�−�g
(
X′)∣∣(−�−�T �

p 1(X)
) K�

p(X,X′)
p(X)p(X′)

]

≤ sup
x

∣∣∣∣ �−�f (x)

�−�T �
p 1(x)

∣∣∣∣E
[∣∣�−�g

(
X′)∣∣ K�

p(X,X′)
p(X)p(X′)

(−�−�T �
p 1(X)

)]

= sup
x

∣∣∣∣ �−�f (x)

�−�T �
p 1(x)

∣∣∣∣E[∣∣�−�g
(
X′)∣∣]

where the last line follows by conditioning on X′ and applying Proposition 2.23. �

4.2. Stein kernel and Cacoullos’ bound

It is natural to consider test function h = −Id in Theorem 3.5. Since �−�h(x) = 1, we obtain

∣∣Cov
[
f (X),g(X)

]∣∣ ≤
√
E

[
τ �
p(X)

(
�−�f (X)

)2]√
E

[
τ �
p(X)

(
�−�g(X)

)2]
.

In particular, if g = f then Var[g(X)] ≤ E[τ �
p(X)(�−�g(X))2] in which one recognizes the

upper bounds from [16] and also, when � = 0, [71]. The lower bound in (41) is obtained for



First-order covariance inequalities via Stein’s method 2075

f (x) = τ �
p(x) for which T �

p f (x) = xIS(p)(x), and the overall bound becomes

E[τ �
p(X)(�−�g(X))]2

Var[X] ≤ Var
[
g(X)

] ≤ E
[(

�−�g(X)
)2

τ �
p(X)

]
. (49)

Example 4.4. In our examples, (49) gives the following covariance identities:

• Binomial distribution: Let X ∼ Bin(n, θ) as in Example 2.12. From Example 2.16, we ob-
tain the upper and lower bounds

(1 − θ)

nθ
E

[
X�−g(X)

]2 ≤ Var
[
g(X)

] ≤ (1 − θ)E
[
X

(
�−g(X)

)2];
θ

n(1 − θ)
E

[
(n − X)�+g(X)

]2 ≤ Var
[
g(X)

] ≤ θE
[
(n − X)

(
�+g(X)

)2]
.

• Beta distribution: From (3.4), for the Beta(α,β)-distribution with variance αβ/((α +
β)2(α + β + 1)),

(α + β + 1)

αβ
E

[
X(1 − X)g′(X)

]2 ≤ Var
[
g(X)

]

≤ 1

α + β
E

[
X(1 − X)

(
g′(X)

)2]
.

The particular case of other Pearson/Ord distributions is detailed in Tables 1, 2 and 3 available
in the supplementary material [38]. The tables include the Binomial distribution and the Beta dis-
tribution for easy reference. The Stein operators, which are given, are those from Example 2.17.
We remark that Cacoullos’ inequality was obtained, in [43], through an argument which is some
form of dual to that outlined in this section, for continuous distributions. In that article, the in-
equality is coined a “weighted Chernov bound”; we refer to [77] as well for extensions towards
stable densities.

4.3. Discussion

The theory presented in our paper is closely connected to several classical topics from functional
analysis. First, as already mentioned in the Introduction, there is a connection with the spectral
gap and Poincaré inequalities. Let σ 2 be a positive function on R; the σ 2-weighted Poincaré
constant (or spectral gap) of a density p is

λσ 2,p = inf
g∈C∞

0 (R)

E[σ 2(X)(g′(X))2]
Var[g(X)] .

The case σ 2 = 1 leads to the classical (unweighted) Poincaré inequality or spectral gap; if there
exists a function gopt achieving equality, one says that the inequality is saturated at gopt. It is an
easy matter to use our notation to extend the above to nonabsolutely continuous distributions.
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Exploiting the freedom of choice in the test functions h in Corollary 3.6 immediately yields the
next result.

Corollary 4.5. Instate all previous assumptions and notation. Then

λσ 2,p ≥ (sup
h

sup
x

{−L�
ph(x)/

(
σ 2(x)�−�h(x)

})−1

where the supremum is taken over all decreasing functions h ∈ L2(p).

It would be of interest to study the connection with the works [13] and [70], and further study
the important problem of saturation of the inequalities.

Finally, a connection between variance bounds with Stein’s method was already noted, for
example, in [35]. It arises naturally in our context by choosing h in Theorem 3.5 such that the
corresponding weight −(�−�h(x))−1L�

ph(x) is constant, that is, any mean zero function h such
that there exists λ ∈ R for which

−L�
ph(x)

�−�h(x)
= λ for all x ∈ S(p).

By construction and Lemma 2.6, such functions are solution to the eigenfunction problem

h(x) = −λT �
p

(
�−�h

)
(x) for all x ∈ S(p)

where operator R�
ph := T �

p (�−�h) is self-adjoint in the sense of that

E
[(
R�

pf (X)
)
g(X)

] = E
[
f (X)

(
R�

pg(X)
)]

for all appropriate f , g. We defer a proper treatment to a later publication.
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Supplementary Material

Supplement to “First-order covariance inequalities via Stein’s method” (DOI: 10.3150/19-
BEJ1182SUPP; .pdf). We provide technical proofs from Section 2, several plots of the functions
functions x �→ K�

p(x, x′)/p(x) (for various values of x′) and x �→ K�
p(x, x)/p(x) and tables for

the Pearson and Ord families.
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