Ernst, M., Swan, Y., & Reinert, G. (2022). On Papathanasiou’s covariance expansions. ALEA: Latin American Journal of Probability and Mathematical Statistics, 19, 1827-1849. doi:10.30757/ALEA.v19-69 Peer Reviewed verified by ORBi |
Ernst, M., & Swan, Y. (2021). Distances between distributions via Stein's method. Journal of Theoretical Probability. doi:10.1007/s10959-021-01075-8 Peer Reviewed verified by ORBi |
Arras, B., Azmoodeh, E., Poly, G., & Swan, Y. (2020). Stein characterizations for linear combinations of gamma random variables. Brazilian Journal of Probability and Statistics. doi:10.1214/18-BJPS420 Peer reviewed |
Ernst, M., Swan, Y., & Reinert, G. (2020). First order covariance inequalities via Stein's method. Bernoulli, 26 (3), 2051–2081. doi:10.3150/19-BEJ1182 Peer reviewed |
Gaunt, R., Mijoule, G., & Swan, Y. (2019). An algebra of Stein operators. Journal of Mathematical Analysis and Applications. doi:10.1016/j.jmaa.2018.09.015 Peer Reviewed verified by ORBi |
McKeague, I., Peköz, E., & Swan, Y. (2019). Stein's method, many interacting worlds and quantum mechanics. Bernoulli, 25 (1), 89-111. Peer reviewed |
Arras, B., Azmoodeh, E., Poly, G., & Swan, Y. (2019). A bound on the 2-Wasserstein distance between linear combinations of independent random variables. Stochastic Processes and Their Applications. doi:10.1016/j.spa.2018.07.009 Peer Reviewed verified by ORBi |
McKeague, I. W., Peköz, E. A., & Swan, Y. (2019). Stein’s method and approximating the quantum harmonic oscillator. Bernoulli, 25 (1), 89-111. doi:10.3150/17-BEJ960 |
Drescher, M., Louchard, G., & Swan, Y. (2019). The adaptive sampling revisited. Discrete Mathematics and Theoretical Computer Science. doi:10.23638/DMTCS-21-3-13 Peer Reviewed verified by ORBi |
Arras, B., & Swan, Y. (October 2018). IT formulae for gamma target: mutual information and relative entropy. IEEE Transactions on Information Theory, 64 (2), 1083-1091. doi:10.1109/TIT.2017.2759279 Peer Reviewed verified by ORBi |
Ernst, M., & Swan, Y. (05 June 2018). Kernelized goodness-of- fit tests for discrete variables [Paper presentation]. Modern Mathematical Methods for Data Analysis, Liège, Belgium. |
Mijoule, G., Reinert, G., & Swan, Y. (2018). Stein operators, kernels and discrepancies for multivariate continuous distributions. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/227656. |
Charlier, E., Ernst, M., Esser, C., Haine, Y., Lacroix, A., Leroy, J., Raskin, J., & Swan, Y. (Eds.). (2018). MATh.en.JEANS. MATh.en.JEANS.be. |
Ernst, M., & Swan, Y. (01 August 2017). Impact of dependency on the distribution of p-value [Paper presentation]. Joint Statistical Meetings - JSM 2017, Baltimore, United States - Maryland. |
Arras, B., & Swan, Y. (2017). A stroll along the gamma. Stochastic Processes and Their Applications, 127, 3661-3688. doi:10.1016/j.spa.2017.03.012 Peer Reviewed verified by ORBi |
Ley, C., Reinert, G., & Swan, Y. (2017). Distances between nested densities and a measure of the impact of the prior in Bayesian statistics. Annals of Applied Probability, 27 (1), 216-241. doi:10.1214/16-AAP1202 Peer Reviewed verified by ORBi |
Ley, C., Reinert, G., & Swan, Y. (2017). Stein's method for comparison of univariate distributions. Probability Surveys, 14, 1-52. doi:10.1214/16-PS278 Peer reviewed |
Ley, C., Swan, Y., & Verdebout, T. (2017). Efficient ANOVA for directional data. Annals of the Institute of Statistical Mathematics. doi:10.1007/s10463-015-0533-x Peer Reviewed verified by ORBi |
Clette, E., & Swan, Y. (13 October 2016). Leaving Gauss: extending Gaussian variance bounds to arbitrary targets [Paper presentation]. 24th Annual Meeting of the Belgian Statistical Society, Namur, Belgium. |
Azmoodeh, E., Arras, B., Poly, G., & Swan, Y. (2016). Distances between probability distributions via characteristic functions and biasing. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/199764. |
Mijoule, G., Gaunt, R., & Swan, Y. (2016). Stein operators for product distributions, with applications. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/199765. |
Arras, B., Mijoule, G., Poly, G., & Swan, Y. (2016). Stein's method on the second Wiener chaos : 2-Wasserstein distance. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/199766. |
Ley, C., & Swan, Y. (2016). Parametric Stein operators and variance bounds. Brazilian Journal of Probability and Statistics. doi:10.1214/14-BJPS271 Peer reviewed |
Ley, C., & Swan, Y. (2016). A general parametric Stein characterization. Statistics and Probability Letters, 111, 67-71. doi:10.1016/j.spl.2016.01.008 Peer Reviewed verified by ORBi |
Dendievel, R., & Swan, Y. (2016). One step further : an explicit solution to Robbins' problem when n=4. Mathematica Applicanda. Peer Reviewed verified by ORBi |
Swan, Y. (2015). Excursions le long de la Gaussienne. In Notes de la 6ème BSSM. Brussels, Belgium: PUB. Peer reviewed |
Nourdin, I., Peccati, G., & Swan, Y. (2014). Integration by parts and representation of information functionals. IEEE International Symposium on Information Theory Proceedings, 2217-2221. doi:10.1109/ISIT.2014.6875227 Peer reviewed |
Hallin, M., Swan, Y., & Verdebout, T. (2014). On Hodges and Lehmann's "6/pi result". Springer proceedings in Mathematics and Statistics, 68, 137-153. doi:10.1007/978-3-319-02651-0_9 Peer reviewed |
Duerinckx, M., Ley, C., & Swan, Y. (2014). Maximum likelihood characterization of distributions. Bernoulli, 20 (2), 775-802. doi:10.3150/13-BEJ506 Peer reviewed |
Nourdin, I., Peccati, G., & Swan, Y. (2014). Entropy and the fourth moment phenomenon. Journal of Functional Analysis, 266, 3170-3207. doi:10.1016/j.jfa.2013.09.017 Peer Reviewed verified by ORBi |
Swan, Y., Ley, C., & Dominicy, Y. (2013). A stochastic analysis of table tennis. Brazilian Journal of Probability and Statistics, 27 (4), 467–486. doi:10.1214/11-BJPS177 Peer reviewed |
Swan, Y., & Ley, C. (2013). Local Pinsker inequalities via Stein’s discrete density approach. IEEE Transactions on Information Theory, 59 (9), 5584-5591. doi:10.1109/TIT.2013.2265392 Peer Reviewed verified by ORBi |
Hoermann, S., & Swan, Y. (2013). A note on the normal approximation error for randomly weighted self-normalized sums. Periodica Mathematica Hungarica, 67 (2), 143-154. doi:10.1007/s10998-013-4789-8 Peer Reviewed verified by ORBi |
Ley, C., & Swan, Y. (2013). Stein's density approach and information inequalities. Electronic Communications in Probability, 18 (7), 1-14. doi:10.1214/ECP.v18-2578 Peer Reviewed verified by ORBi |
Hallin, M., Swan, Y., Verdebout, T., & Veredas, D. (2013). One-step R-estimation in linear models with stable errors. Journal of Econometrics, 172, 195-204. doi:10.1016/j.jeconom.2012.08.016 Peer Reviewed verified by ORBi |
Ley, C., Swan, Y., Thiam, B., & Verdebout, T. (2013). Optimal rank-based inference for spherical location. Statistica Sinica, 23, 305-332. Peer Reviewed verified by ORBi |
Hallin, M., Swan, Y., Verdebout, T., & Veredas, D. (2011). Rank-based testing in linear models with stable errors. Journal of Nonparametric Statistics, 23, 305-320. doi:10.1080/10485252.2010.525234 Peer Reviewed verified by ORBi |
Ley, C., Richard, N., & Swan, Y. (Eds.). (2011). Notes de la troisième BSSM. Bruxelles, Belgium: Presses Universitaires Bruxelles. |
Paindaveine, D., & Swan, Y. (2011). A stochastic analysis of some two-person sports. Studies in Applied Mathematics, 127, 221-249. doi:10.1111/j.1467-9590.2011.00517.x Peer Reviewed verified by ORBi |
Swan, Y. (2011). A contribution to the study of Robbins’ problem [Post doctoral thesis, ULiège - Université de Liège]. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/192589 |
Bruss, F. T., & Swan, Y. (2009). A continuous time approach to Robbins' problem of minimizing the expected rank. Journal of Applied Probability, 46, 1-18. doi:10.1239/jap/1238592113 Peer Reviewed verified by ORBi |
Swan, Y. (2007). On two unsolved problems in probability [Doctoral thesis, ULB - Université Libre de Bruxelles]. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/188656 |
Swan, Y., & Bruss, F. T. (2006). A Matrix-Analytic approach to the N-player ruin problem. Journal of Applied Probability, 43, 755-766. doi:10.1239/jap/1158784944 Peer Reviewed verified by ORBi |
Swan, Y., & Bruss, F. T. (2004). The Schwarz-Christoffel transformation as a tool in applied probability. Mathematical Scientist, 29, 21-32. Peer Reviewed verified by ORBi |