Deep Reinforcement Learning; Function Approximators; Model-free Deep Reinforcement Learning
Abstract :
[en] This paper makes one step forward towards characterizing a new family of model-free Deep Reinforcement Learning (DRL) algorithms. The aim of these algorithms is to jointly learn an approximation of the state-value function (V), alongside an approximation of the state-action value function (Q). Our analysis starts with a thorough study of the Deep Quality-Value Learning (DQV) algorithm, a DRL algorithm which has been shown to outperform popular techniques such as Deep-Q-Learning (DQN) and Double-Deep-Q-Learning (DDQN). Intending to investigate why DQV's learning dynamics allow this algorithm to perform so well, we formulate a set of research questions which help us characterize a new family of DRL algorithms. Among our results, we present some specific cases in which DQV's performance can get harmed and introduce a novel off-policy DRL algorithm, called DQV-Max, which can outperform DQV. We then study the behavior of the V and Q functions that are learned by DQV and DQV-Max and show that both algorithms might perform so well on several DRL test-beds because they are less prone to suffer from the overestimation bias of the Q function.
Disciplines :
Computer science
Author, co-author :
Sabatelli, Matthia ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
Louppe, Gilles ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Big Data
Geurts, Pierre ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
Wiering, Marco; University of Groningen > Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence
Language :
English
Title :
Approximating two value functions instead of one: towards characterizing a new family of Deep Reinforcement Learning algorithms
Publication date :
December 2019
Journal title :
Advances in Neural Information Processing Systems
ISSN :
1049-5258
Publisher :
Morgan Kaufmann Publishers, San Mateo, United States - California
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.