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Abstract

This paper makes one step forward towards characterizing a new family of model-
free Deep Reinforcement Learning (DRL) algorithms. The aim of these algorithms
is to jointly learn an approximation of the state-value function (V ), alongside an
approximation of the state-action value function (Q). Our analysis starts with
a thorough study of the Deep Quality-Value Learning (DQV) algorithm, a DRL
algorithm which has been shown to outperform popular techniques such as Deep-
Q-Learning (DQN) and Double-Deep-Q-Learning (DDQN) [16]. Intending to
investigate why DQV’s learning dynamics allow this algorithm to perform so
well, we formulate a set of research questions which help us characterize a new
family of DRL algorithms. Among our results, we present some specific cases
in which DQV’s performance can get harmed and introduce a novel off-policy
DRL algorithm, called DQV-Max, which can outperform DQV. We then study the
behavior of the V and Q functions that are learned by DQV and DQV-Max and
show that both algorithms might perform so well on several DRL test-beds because
they are less prone to suffer from the overestimation bias of the Q function.

1 Introduction

Value-based Reinforcement Learning (RL) algorithms aim to learn value functions that are either able
to estimate how good or bad it is for an agent to be in a particular state, or how good it is for an agent to
perform a particular action in a given state. Such functions are respectively denoted as the state-value
function V (s), and the state-action value function Q(s, a) [19]. Both can be formally defined by
considering the RL setting as a Markov Decision Process (MDP) where the main components are a
finite set of states S = {s1, s2, ..., sn}, a finite set of actions A and a time-counter variable t. In each
state st ∈ S, the RL agent can perform an action at ∈ A(st) and transit to the next state as defined
by a transition probability distribution p(st+1|st, at). When moving from st to a successor state st+1

the agent receives a reward signal rt coming from the reward function <(st, at, st+1). The actions of
the agent are selected based on its policy π : S → A that maps each state to a particular action. For
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every state s ∈ S, under policy π its value function V is defined as:

V π(s) = E

[ ∞∑
k=0

γkrt+k

∣∣∣∣st = s, π

]
, (1)

which denotes the expected cumulative discounted reward that the agent will get when starting in
state s and by following policy π thereafter. Similarly, we can also define the state-action value
function Q for denoting the value of taking action a in state s based on policy π as:

Qπ(s, a) = E

[ ∞∑
k=0

γkrt+k

∣∣∣∣st = s, at = a, π

]
. (2)

Both functions are computed with respect to the discount factor γ ∈ [0, 1] which controls the trade-off
between immediate and long term rewards. The goal of an RL agent is to find a policy π∗ that realizes
the optimal expected return:

V ∗(s) = max
π

V π(s), for all s ∈ S (3)

and the optimal Q value function:
Q∗(s, a) = max

π
Qπ(s, a) for all s ∈ S and a ∈ A. (4)

It is well-known that optimal value functions satisfy the Bellman optimality equation as given by

V ∗(st) = max
a

∑
st+1

p(st+1|st, at)
[
<(st, at, st+1) + γV ∗(st+1)

]
(5)

for the state-value function, and by

Q∗(st, at) =
∑
st+1

p(st+1|st, at)
[
<(st, at, st+1) + γ max

at+1

Q∗(st+1, at+1)

]
, (6)

for the state-action value function. Both functions can either be learned via Monte Carlo methods or
by Temporal-Difference (TD) learning [18], with the latter approach being so far the most popular
choice among model-free RL algorithms [24, 15, 8, 14]. In Deep Reinforcement Learning (DRL) the
aim is to approximate these value functions with e.g. deep convolutional neural networks [17, 11].
This has led to the development of a large set of DRL algorithms [9] among which we mention Deep-
Q-Learning (DQN) [13] and Double Deep-Q-Learning (DDQN) [22]. Both algorithms have learning
an approximation of the state-action-value function as their main goal. This approach however, has
recently shown to be outperformed by the Deep Quality-Value-Learning (DQV) algorithm [16], a
relatively novel algorithm which simultaneously approximates the state-value function alongside the
state-action value function.

1.1 The Deep Quality-Value Learning Algorithm

DQV-Learning [16] is based on the tabular RL algorithm QV(λ) [25], and learns an approximation
of the V function and the Q function with two distinct neural networks that are parametrized
by Φ and θ respectively. Both neural networks learn via TD-learning and from the same target
(rt + γV (st+1; Φ−)), which is computed by the state-value network Φ. The approximation of the Q
function is achieved by minimizing the following loss:

L(θ) = E〈st,at,rt,st+1〉∼U(D)

[(
rt + γV (st+1; Φ−)−Q(st, at; θ)

)2]
, (7)

while the following loss is minimized for learning the V function:

L(Φ) = E〈st,at,rt,st+1〉∼U(D)

[(
rt + γV (st+1; Φ−)− V (st; Φ)

)2]
, (8)

where D is the Experience-Replay memory buffer [12], used for uniformly sampling batches of RL
trajectories 〈st, at, rt, st+1〉, and Φ− is the target-network that is used for the construction of the
TD errors. We refer the reader to the supplementary material for a more in-depth explanation of the
algorithm which is presented in Algorithm 1.

In [16] it is shown that DQV is able to learn faster and better than DQN and DDQN on six different
RL test-beds. It is however not clear why DQV is able to outperform such algorithms so significantly.
In what follows we aim at gaining a more in-depth understanding of this algorithm, and build upon
this knowledge to investigate the potential benefits that could come from approximating both the V
function and the Q function instead of only the latter one.
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2 Research Questions and Methods

We now present the different research questions that are tackled in this work. We propose some
modifications to the original DQV-Learning algorithm, construct a novel DRL algorithm called
Deep-Quality-Value-Max Learning (DQV-Max), and finally investigate the learning dynamics of
DQV and DQV-Max by studying their performance under the lens of the Deadly Triad phenomenon
[19, 21].

2.1 Question 1: does DQV perform better than DQN because it uses twice as many
parameters?

Since the state-value function and the state-action value function are approximated with two separate
neural networks, DQV uses twice as many parameters as DQN. It is therefore possible that DQV
outperforms this algorithm because the capacity of the model is larger. Approximating two value
functions instead of one comes at a price that needs to be paid in terms of memory requirements,
a problem which we tackle by taking inspiration from the work proposed in [23] on the Dueling-
Architecture. Aiming to reduce the amount of trainable parameters of DQV, we modify the original
version of the algorithm by exploring two different approaches. The first one, simply adds one output
node dedicated for learning the V function next to the nodes that estimate the different state-action
values (see Fig. 1a). This significantly reduces the parameters of DQV but assumes that the features
that are learned for approximating the V function correspond to the ones that are required for learning
the Q function. This also assumes that the capacity of the neural network (which structure follows
the one proposed in [13]) is large enough for approximating both value functions. Since this might
not be the case, the second approach adds one specific hidden layer to the network which precedes
the outputs of the different estimated value functions (see Fig. 1b). Since, as introduced in [25], the
V function could be easier to learn than the Q function, we also experiment with the location of the
hidden layer preceding the V output. We position it after each convolution layer, intending to explore
whether the depth of the network influences the quality of the learned V function.

(a) (b)

Figure 1: Two representations of convolutional neural networks which jointly approximate the V
function and the Q function with the aim of reducing DQV’s learning parameters. On the left, an
architecture which simply adds one output node to the network next to the output nodes which
estimate the Q function. On the right an architecture in which a specific hidden layer precedes the
output that is necessary for computing each value function. When it comes to the V function we
experiment with different locations of such hidden layer, which is positioned after each possible
convolution block.

2.2 Question 2: is using two value function approximators also beneficial in an off-policy
learning setting?

One important difference between DQV compared to DQN and DDQN is that the last two algorithms
learn the Q function with an off-policy learning scheme, while DQV is an on-policy learning
algorithm. In an off-policy learning setting, the TD errors are constructed with respect to values which
are different from the agent’s actual behavior. This has the benefit of allowing the agent to explore
many different policies [21] because learning is not restricted by the policy that is being followed. If
on the one hand, this can be extremely beneficial when it comes to value iteration algorithms [3, 24],
it is also well-known that this particular learning setting yields DRL algorithms that can diverge
[19, 21, 7, 1]. It is therefore not clear whether DQV strongly outperforms DQN and DDQN because
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it is actually beneficial to approximate both value functions, or simply because being an on-policy
learning algorithm, DQV is just less prone to diverge.

To answer this question we introduce a novel DRL algorithm called Deep-Quality-Value-Max
Learning (DQV-Max). Similarly to DQV this algorithm is also based on a tabular RL-algorithm
which was initially introduced in [26]. DQV-Max is constructed in a resembling way as DQV, even
though its objectives change. The V function is learned with respect to the greedy strategy max

a∈A
Q,

therefore making DQV-Max an off-policy learning algorithm. DQV’s loss that is used for learning
the V function presented in Eq. 8 gets modified as follows:

L(Φ) = E〈st,at,rt,st+1〉∼U(D)

[(
rt + γ max

a∈A
Q(st+1, a; θ−)− V (st; Φ)

)2]
. (9)

The way the Q function is approximated is not modified, with the only difference being that in this
case we decided to not use any target network, since one is already used for learning the V function:

L(θ) = E〈st,at,rt,st+1〉∼U(D)

[(
rt + γV (st+1; Φ)−Q(st, at; θ)

)2]
. (10)

Similarly as done for DQV, we report an in-depth presentation of this algorithm in Algorithm 2,
which can be found in the supplementary material of this work.

2.3 Question 3: DQV, DQV-Max, and the Deadly Triad, how are they related?

It is known that DRL algorithms are prone to damage the quality of their learned policy when a
function approximator that regresses towards itself is used for learning a value function [4]. This
phenomenon is formally known to be caused by the Deadly Triad [19]. DQV and DQV-Max are at
least connected to two out of three components of the Triad and could, therefore, help to gain new
insights in the study of DRL divergence. We briefly present how each algorithm is related to each
element of the Triad, which is highlighted in bold, hereafter:

• Both algorithms make obvious use of deep neural networks which serve as function ap-
proximators for learning a value function.

• DQV and DQV-Max make use of bootstrapping: as shown in Eq.7 and Eq.8 DQV boot-
straps towards the same target (which is given by the state-value network), whereas DQV-
Max bootstraps towards two distinct targets (Eq. 9 and Eq. 10).

• Lastly only DQV-Max presents the final element of the Triad: differently from DQV this is
the only algorithm which learns in an off-policy learning setting.

Based on this information we formulate two hypotheses: the first one is that being an on-policy
learning algorithm, DQV should be less prone to suffer from divergence than more popular off-policy
algorithms. The second hypothesis is that even though DQV-Max is an off-policy learning algorithm,
there is one important difference within it: it learns an approximation of the Q function with respect
to TD errors which are given by the V network, therefore not regressing the Q function towards itself
anymore (as DQN and DDQN do). Because of this specific learning dynamic, we hypothesize that
DQV-Max, could be less prone to diverge. However, if compared to DQV, DQV-Max should still
diverge more since it presents all elements of the Deadly Triad, while DQV does not.

To quantitatively assess our hypotheses we will investigate whether DQV and DQV-Max suffer from
what is known to be one of the main causes of divergence in DRL [21]: the overestimation bias of the
Q function [8].

3 Results

We now answer the presented research questions by reporting the results that we have obtained on the
well-known Atari-Arcade-Learning (ALE) benchmark [2]. We have used the games Boxing,
Pong and Enduro since they are increasingly complex in terms of difficulty and can be mastered
within a reasonable amount of training time. We refer the reader to the supplementary material for a
thorough presentation of the experimental setup that has been used in this work.
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3.1 HARD-DQV and Dueling Deep Quality-Value Learning (Question 1)

We start by reporting the results that have been obtained with the neural architecture reported in Fig.
1a. We refer to this algorithm as HARD-DQV since all the parameters of the agent are hardly-shared
within the network [5]. We can observe from the blue learning curves presented in Fig. 2 that this
approach drastically reduces the performance of DQV on all the tested environments. The results
are far from the original DQV algorithm and suggest that a proper approximation of the V function
and Q function can only be learned with a neural architecture which has a higher capacity and that
reserves some specific parameters that are selective for learning one value function.
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Figure 2: The results obtained with a neural architecture in which the output node dedicated to
learning the V function, is placed next to the output nodes which estimate the Q function. It is clear
from the results that this approach, albeit drastically reducing the memory requirements of DQV, also
significantly harms its performance.

Better results have been obtained with a neural architecture which uses a specific hidden layer before
the outputs of the V and Q functions (Fig. 1b). We refer to this algorithm as Dueling-DQV, where
Dueling-DQV-1st corresponds to an architecture in which the V function is learned after the first
convolution block, Dueling-DQV-2nd after the second block and Dueling-DQV-3rd after the third.
As reported in Fig. 3 on the simple Boxing environment we can observe that no matter where the
state-value layer is positioned, all versions of Dueling-DQV perform as well as the original DQV
algorithm. On the more complicated Pong environment, however, the performance of Dueling-DQV
starts to be strongly affected by the depth of the state-value layer. The only case in which Dueling-
DQV performs as well as DQV is when the V function is learned after all three convolutional layers.
More interestingly, on the most complicated Enduro environment, the performance of DQV cannot
be matched by any of the Dueling architectures, in fact, the rewards obtained by Dueling-3rd and
DQV differ with ≈ 200 points. These results seem to suggest that the parameters of DQV can be
reduced, as long as some specific value-layers are added to the neural architecture. However, this
approach presents limitations. As shown by the results obtained on the Enduro environment, the best
version of DQV remains the one in which two distinct neural networks approximate the V and Q
functions.
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Figure 3: The results obtained by the different Dueling-DQV architectures. On the Boxing and Pong
environments similar results as the ones obtained by DQV can be achieved. However on the Enduro
environment none of the proposed architectures is able to perform as well as DQV. This suggests
that the most beneficial strategy for approximating two value functions is with two distinct neural
networks.

3.2 The Deep Quality-Value-Max Algorithm (Question 2)

By investigating the performance of the novel DQV-Max algorithm, promising results have been
obtained. As we can see in Fig. 4, DQV-Max has a comparable, and sometimes even better
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performance than the DQV algorithm, therefore strongly outperforming DQN and DDQN. It learns
as fast when it comes to the Boxing and Pong environments and achieves an even higher cumulative
reward on the Enduro environment, making it the overall best performing algorithm. These results
remark the benefits of jointly learning an approximation of the V function and the Q function, and
show that this approach is just as beneficial when it comes to an off-policy learning setting than it is
in an on-policy learning one. We can therefore answer affirmatively to the second research question
analyzed in this work.
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Figure 4: The results obtained by the DQV-Max algorithm on the Boxing, Pong and Enduro
environments. DQV-Max is able to learn as fast and even better than DQV, suggesting that jointly
approximating two value functions is also beneficial in an off-policy learning setting.

3.3 Reducing the overestimation bias of the Q function (Question 3)

To investigate whether DQV and DQV-Max suffer from the overestimation bias of the Q function
we have performed the following experiment. As proposed in [22] we monitor the Q function of
the algorithms at training time by computing the averaged max

a∈A
Q(st+1, a) over a set (n) of full

evaluation episodes as defined by 1
n

∑n
t=1 max

a∈A
Q(st+1, a; θ). We then compare these estimates with

the averaged discounted return of all visited states which is given by the same agent that has already
concluded training. This provides a reliable baseline for measuring whether the estimated Q values
diverge from the ones which should actually be predicted. We report these results in Fig. 5a and 5b,
where for each plot the dashed line corresponds to the actual averaged discounted return of the visited
states, while the full lines correspond to the value estimates that are computed by each algorithm.

Our results show that DQV and DQV-Max seem to suffer less from the overestimation bias of
the Q function since both algorithms learn more stable and accurate value estimates. This allows
us to answer both hypotheses introduced in Sec. 2.3 affirmatively: jointly approximating the V
function and the Q function can prevent DRL from diverging, since this learning dynamic allows the
algorithms to estimate more realistic and not increasingly large Q values. However, this becomes
harder to achieve once the algorithm learns off-policy. By analyzing the plot presented in Fig. 5b,
we can observe that the value estimates of DQV-Max are still higher from the ones which should be
predicted by the end of training. However, differently, from the ones of DQN, they get bounded over
time, therefore resulting in a less strong divergence. It is also worth noting how in our experiments
the DDQN algorithm fully corrects the overestimation bias of DQN as expected.

One could argue that DQV and DQV-Max might not be overestimating the Q function because they
are overestimating the V function instead. In order to verify this, we have investigated whether the
estimates of the state-value network are higher than the ones coming from the state-action value
network. Similarly to the previous experiment we use the models that are obtained at the end of
training and randomly sample a set of states from the ALE which are then used in order to compute
V (s) and max Q(s, a). We then investigate whether V (s) is higher than the respective max Q(s, a)
estimate. As can be seen in Fig. 6 this is almost never the case, which empirically shows that both
DQV and DQV-Max do not overestimate the V function instead of the Q function.

4 Final Evaluation Performance

In order to better evaluate the performance of all analyzed algorithms we now present results which
have been obtained on a larger set of Atari games. The main aim of this section is to investigate
whether the DQV-Max algorithm can be as successful as DQV, and to test both algorithms over a
larger, more significant set of Atari games than the ones which were used when the DQV-Learning
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(a) (b)

Figure 5: A representation of the value estimates that are obtained by each algorithm at training time
(denoted by the full lines), with respect to the actual discounted return obtained by an already trained
agent (dashed lines). We can observe that on Pong DQN’s estimates rapidly grow before getting
closer to the baseline discounted value, while DQV and DQV-Max do not show this behavior. Their
value estimates are more similar to the ones of the DDQN algorithm. This is especially the case
for DQV. On the Enduro environment, DQN’s estimates do not stop increasing over time and keep
moving away from the actual values of each state while DQV’s value estimates remain bounded and
do not diverge as much. DQV-Max diverges more than DQV but still not as much as DQN. DQN’s
behavior corresponds to the one observed in [22] and can be linked to the overestimation bias of
the algorithm, (which is fully corrected by DDQN). This suggests that DQV and DQV-Max might
perform so well on the ALE environment because they are less prone to overestimate the Q function.
Furthermore, it is worth noting the different baseline values which denote the averaged discounted
return estimates when it comes to the Enduro environment: the lines representing the true values of
the final policy are very different among algorithms, indicating that DQV and DQV-Max do not only
learn more accurate value estimates but also lead to better final policies.

(a) (b)

Figure 6: The results showing that the value estimates of the V network are never significantly higher
than the ones coming from the Q network for a set of randomly sampled states. On the contrary,
the V (s) is mostly lower than the respective max Q(s, a) estimate. This suggests that DQV and
DQV-Max do not overestimate the state-value function instead of the state-action value function.

algorithm was initially introduced [16]. Our evaluation protocol is based on the widely used no-op
action evaluation regime [13, 22] in which the policies of the agents are tested over a series of
episodes that all start by executing a set of partially random actions. It is known that this is an
effective way of testing the level of generalization of the learned policies. In Table 1 we report the
baseline scores that are obtained by random-play and by an expert-human player which come from
[13]. These scores are necessary for evaluating whether our DRL algorithms are able to achieve the
super-human performance on the Atari benchmark which has made the DQN algorithm so popular.
Furthermore, in order to test whether the algorithms of the DQV family can be considered as two
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valid novel alternatives within synchronous model-free DRL, we again compare their performance
with DQN and DDQN. Our results, reported in Table 1, show the best performing algorithm in a
green cell, while the second-best performing agent is shown in a yellow cell. When the scores over
games are equivalent, like on the Pong environment, we report in the green and yellow cells the
fastest and second fastest algorithm with respect to its convergence time.

Overall, we can observe that both DQV and DQV-Max successfully master all the different games
on which they have been tested on, with the exception for the Montezuma’s Revenge game, which
will probably require more sophisticated exploration strategies [6] to be mastered. It is worth noting
that the novel DQV-Max algorithm introduced in this work is the overall best performing algorithm,
and that the algorithms of the DQV-family are the only ones which are able to obtain super-human
performance on the games Bank Heist and Enduro. Lastly, even if the performance of DQV and
DQV-Max is close to the one of DQN and DDQN it is worth mentioning that, as highlighted by the
learning curves presented in Sec. 3.2, these algorithms converge significantly faster than DQN and
DDQN, therefore resulting in faster training.

Table 1: The results obtained by DQV and DQV-Max on a larger set of Atari games when following
the no-op action evaluation regime used in [13] and [22]. We can observe that both algorithms are
overall able to perform equally well as DQN and DDQN, with the main difference that, as reported in
Fig. 4, these algorithms converge significantly faster.

Environment Random Human DQN[13] DDQN[22] DQV DQV-Max
Asteroids 719.10 13156.70 1629.33 930.60 1445.40 1846.08
Bank Heist 14.20 734.40 429.67 728.30 1236.50 1118.28
Boxing 0.10 4.30 71.83 81.70 78.66 80.15
Crazy Climber 10780.50 35410.50 114103.33 101874.00 108600.00 1000131.00
Enduro 0.00 309.60 301.77 319.50 829.33 875.64
Fishing Derby -91.70 5.50 -0.80 20.30 1.12 20.42
Frostbite 65.20 4334.70 328.33 241.50 271.86 281.36
Ice Hockey -11.20 0.90 -1.60 -2.40 -1.88 -1.12
James Bond 29.00 406.70 576.67 438.00 372.41 375.00
Montezuma’s Revenge 0.00 4366.70 0.00 0.00 0.00 0.00
Ms.Pacman 307.30 15693.40 2311.00 3210.00 3590.00 3390.00
Pong -20.70 9.30 18.90 21.00 21.00 21.00
Road Runner 11.50 7845.00 18256.67 48377.00 39290.00 20700.00
Zaxxon 32.50 9173.30 4976.67 10182.00 10950.00 8487.00

5 Conclusion

In this work, we have made one step towards properly characterizing a new family of DRL algorithms
which simultaneously learns an approximation of the V function and the Q function. We have
started by thoroughly analyzing the DQV algorithm [16], and have shown in Sec. 3.1 that one key
component of DQV is to use two independently parameterized neural networks for learning the V and
Q functions. We have then borrowed some ideas from DQV to construct a novel DRL algorithm in
Sec. 3.2 in order to show that approximating two value functions instead of one is just as beneficial in
an off-policy learning setting as it is in an on-policy learning one. We have then studied how the DQV
and DQV-Max algorithms are related to the DRL Deadly Triad, and hypothesized that the promising
results obtained by both algorithms, could partially be achieved because both algorithms could suffer
less from the overestimation bias of the Q function. From Sec. 3.3 we have concluded that this was
indeed the case, even though DQV-Max seems to be more prone to suffer from this phenomenon. We
have then ended the paper with an in-depth empirical analysis of the studied algorithms in Sec. 4,
which generalizes all the results used in the previous sections to a larger set of DRL test-beds. To
conclude, this paper sheds some light on the benefits that could come from approximating two value
functions instead of one, and properly characterizes a new family of DRL algorithms which follow
such learning dynamics.
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6 Supplementary Material

6.1 Experimental Setup

We follow the experimental setup which is widely used in the literature [13, 22, 10]. A convolutional
neural network with three convolutional layers is used [13], followed by a fully connected layer. The
network receives the frames of the different games as input. When it comes to DQV and DQV-Max
we use the same architecture for approximating the V function and the Q function with the only
difference being the size of the output layer. For the V network this is simply 1, while for the Q
network there are as many output nodes as possible actions. Both networks are trained with the
RMSprop optimizer [20] initialized as in [13]. The version on the ALE environment corresponds
to the Deterministic-v4 one which uses ‘Frame-Skipping’, a design choice which lets the agent
select an action every 4th frame instead of every single one. Furthermore, we use the standard
Atari-preprocessing scheme for resizing each frame of the environment to an 84× 84 gray-scaled
matrix and as exploration strategy we use for all algorithms the epsilon-greedy approach. Regarding
the target networks which are used in all our experiments, we update their weights each time the
agent has performed a total of 10,000 actions. Lastly, the discount factor γ is set to 0.99 and the
size of the memory buffer is set to contain 1,000,000 transitions. So far, we have run experiments
on 14 different games for which each algorithm is tested by running 5 different simulations with
5 different random seeds. The code for reproducing our experiments can be found at https:
//github.com/paintception/Deep-Quality-Value-Family-/tree/master/src. We are
currently testing our algorithms on as many games of the Atari benchmark as possible.

6.2 Pseudocode of DQV and DQV-Max learning.

This section reports the pseudo-codes of Deep Quality-Value (DQV) learning (Algorithm 1) and its
novel Deep Quality-Value-Max (DQV-Max) extension (Algorithm 2). Each algorithm requires the
initialization of two neural networks that are required for approximating the state-value function Φ
and the state-action value function θ. DQV requires a target network for estimating the state-value
(V ) function which is initialized as Φ−, whereas DQV-Max requires it for learning the state-action
value (Q) function, therefore it is defined as θ−. For our experiments the Experience Replay buffer
D is set to contain at most 400,000 trajectories (N ), from which we start sampling as soon as it
contains 50000 (N ) trajectories (〈 st, at, rt, st+1 〉). D is handled as a queue: when its maximum
size is reached, every new sample stored in the queue overwrites the oldest one. We also initialize
the counter-variable, total_a which is required for keeping track of how many actions the agent has
performed over time. Once it corresponds to the hyperparameter c we update the weights of the target
network with the ones of the main network. Regarding the targets that are constructed in order to
compute the Temporal-Difference errors we refer to them as yt in the DQV algorithm, while as vt
and qt when it comes to DQV-Max. This is done in order to highlight the fact that the latter algorithm
requires the computation of two different targets to bootstrap from.
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Algorithm 1 DQV Learning

Require: Experience Replay Queue D of maximum size N
Require: Q network with parameters θ
Require: V networks with parameters Φ and Φ−

Require: total_a = 0
Require: total_e = 0
Require: c = 10000
Require: N = 50000

1: while True do
2: set st as the initial state
3: while st is not over do
4: select at ∈ A for st with policy π (using the epsilon-greedy strategy)
5: get rt and st+1

6: store 〈st, at, rt, st+1〉 in D
7: st := st+1

8: total_e += 1
9: if total_e = N then

10: sample a minibatch B = {〈sit, ait, rit, sit+1〉|i = 1, . . . , 32} of size 32 from D
11: for i = 1 to 32 do
12: if sit+1 is over then
13: yit := rit
14: else
15: yit := rit + γV (sit+1,Φ

−)
16: end if
17: end for
18: θ := arg min

θ

∑32
i=1(yit −Q(sit, a

i
t, θ))

2

19: Φ := arg min
Φ

∑32
i=1(yit − V (sit,Φ))2

20: total_a += 1
21: if total_a = c then
22: Φ− := Φ
23: total_a := 0
24: end if
25: end if
26: end while
27: end while
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Algorithm 2 DQV-Max Learning

Require: Experience Replay Queue D of maximum size N
Require: Q networks with parameters θ and θ−
Require: V network with parameters Φ
Require: total_a = 0
Require: total_e = 0
Require: c = 10000
Require: N = 50000

1: while True do
2: set st as the initial state
3: while st is not over do
4: select at ∈ A for st with policy π (using the epsilon-greedy strategy)
5: get rt and st+1

6: store 〈st, at, rt, st+1〉 in D
7: st := st+1

8: total_e += 1
9: if total_e = N then

10: sample a minibatch B = {〈sit, ait, rit, sit+1〉|i = 1, . . . , 32} of size 32 from D
11: for i = 1 to 32 do
12: if sit+1 is over then
13: vit := rit
14: qit := rit
15: else
16: vit := rit + γ max

a∈A
(Q(sit+1, a, θ

−))

17: qit := rit + γ V (sit+1,Φ)
18: end if
19: end for
20: θ := arg min

θ

∑32
i=1(qit −Q(sit, a

i
t, θ))

2

21: Φ := arg min
Φ

∑32
i=1(vit − V (sit,Φ))2

22: total_a += 1
23: if total_a = c then
24: θ− := θ
25: total_a := 0
26: end if
27: end if
28: end while
29: end while
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