Asaad, W. F., and Eskandar, E. N. (2008). A flexible software tool for temporally-precise behavioral control in Matlab. J. Neurosci. Methods 174, 245-258. doi: 10.1016/j.jneumeth.2008.07.014 PubMed Abstract | CrossRef Full Text | Google Scholar
Basar, E., Basar-Eroglu, C., Karakas, S., and Schurmann, M. (2000). Brain oscillations in perception and memory. Int. J. Psychophysiol. 35, 95-124. doi: 10.1016/S0167-8760(99)00047-1 PubMed Abstract | CrossRef Full Text | Google Scholar
Binder, J. R., Desai, R. H., Graves, W. W., and Conant, L. L. (2009). Where is the semantic system- a critical review and meta-analysis of 120 functional neuroimaging studies. Cereb. Cortex 19, 2767-2796. doi: 10.1093/cercor/bhp055 PubMed Abstract | CrossRef Full Text | Google Scholar
Breault, M. S., González-Martínez, J., Sarma, S. V., and Gale, J. T. (2019a). "Neural activity from attention networks predicts movement errors, " in Proceedings of the 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (Berlin). Google Scholar
Breault, M. S., González-Martínez, J., Sarma, S. V., and Gale, J. T. (2019b). "Neural correlates of internal states that capture movement variability, " in Proceedings of the 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (Berlin). Google Scholar
Breault, M. S., Sacré, P., González-Martínez, J., Gale, J. T., and Sarma, S. V. (2018). An exploratory data analysis method for identifying brain regions and frequencies of interest from large-scale neural recordings. J. Comput. Neurosci. 46, 3-17. doi: 10.1007/s10827-018-0705-9 PubMed Abstract | CrossRef Full Text | Google Scholar
Breault, M. S., Sacré, P., Johnson, J. J., Kerr, M., Johnson, M., Bulacio, J., et al. (2017). "Nonmotor regions encode path-related information during movements, " in Proceedings of the 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (Seogwipo), 3339-3342. PubMed Abstract | Google Scholar
Canolty, R. T., and Knight, R. T. (2010). The functional role of cross-frequency coupling. Trends Cogn. Sci. 14, 506-515. doi: 10.1016/j.tics.2010.09.00 PubMed Abstract | CrossRef Full Text | Google Scholar
Cavanna, A. E., and Trimble, M. R. (2006). The precuneus: A review of its functional anatomy and behavioural correlates. Brain 129, 564-583. doi: 10.1093/brain/awl004 PubMed Abstract | CrossRef Full Text | Google Scholar
Cole, M. W., Repovs, G., and Anticevic, A. (2014). The frontoparietal control system: A central role in mental health. Neuroscientist 20, 652-664. doi: 10.1177/1073858414525995 PubMed Abstract | CrossRef Full Text | Google Scholar
Crone, N. E., Miglioretti, D. L., Gordon, B., and Lesser, R. P. (1998a). Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis: II. Event-related synchronization in the gamma band. Brain 121, 2301-2315. PubMed Abstract | Google Scholar
Crone, N. E., Miglioretti, D. L., Gordon, B., Sieracki, J. M., Wilson, M. T., Uematsu, S., et al. (1998b). Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis: I. Alpha and beta event-related desynchronization. Brain 121, 2271-2299. PubMed Abstract | Google Scholar
Culham, J. C., and Valyear, K. F. (2006). Human parietal cortex in action. Curr. Opin. Neurobiol. 16, 205-212. doi: 10.1016/j.conb.2006.03.005 PubMed Abstract | CrossRef Full Text | Google Scholar
Diedrichsen, J., Hashambhoy, Y., Rane, T., and Shadmehr, R. (2005). Neural correlates of reach errors. J. Neurosci. 25, 9919-9931. doi: 10.1523/JNEUROSCI.1874-05.2005 PubMed Abstract | CrossRef Full Text | Google Scholar
Epstein, R. A., Parker, W. E., and Feiler, A. M. (2007). Where am I now- Distinct roles for parahippocampal and retrosplenial cortices in place recognition. J. Neurosci. 27, 6141-6149. doi: 10.1523/JNEUROSCI.0799-07.2007 PubMed Abstract | CrossRef Full Text | Google Scholar
Freund, H. J. (2001). The parietal lobe as a sensorimotor interface: A perspective from clinical and neuroimaging data. NeuroImage 14, S142-S146. doi: 10.1006/nimg.2001.0863 PubMed Abstract | CrossRef Full Text | Google Scholar
Fyhn, M., Molden, S., Witter, M. P., Moser, E. I., and Moser, M.-B. (2004). Spatial representation in the entorhinal cortex. Science 305, 1258-1264. doi: 10.1126/science.1099901 PubMed Abstract | CrossRef Full Text | Google Scholar
Gonzalez, S. L., Grave de Peralta, R., Thut, G., del R Millán, J., Morier, P., and Landis, T. (2006). Very high frequency oscillations (VHFO) as a predictor of movement intentions. NeuroImage 32, 170-179. doi: 10.1016/j.neuroimage.2006.02.041 PubMed Abstract | CrossRef Full Text | Google Scholar
González-Martínez, J., Bulacio, J., Thompson, S., Gale, J. T., Smithason, S., Najm, I., et al. (2015). Technique, results, and complications related to robot-assisted stereoelectroencephalography. Neurosurgery 78, 169-180. doi: 10.1227/NEU.0000000000001034 PubMed Abstract | CrossRef Full Text | Google Scholar
Gottlieb, J. (2007). From thought to action: The parietal cortex as a bridge between perception, action, and cognition. Neuron 53, 9-16. doi: 10.1016/j.neuron.2006.12.009 PubMed Abstract | CrossRef Full Text | Google Scholar
Grafton, S. T., and de C. Hamilton, A. F. (2007). Evidence for a distributed hierarchy of action representation in the brain. Hum. Move. Sci. 26, 590-616. doi: 10.1016/j.humov.2007.05.009 PubMed Abstract | CrossRef Full Text | Google Scholar
Grave de Peralta, R., Landis, T., and Andino, S. G. (2009). Electrical neuroimaging of single trials to identify laterality and brain regions involved in finger movements. J. Physiol. Paris 103, 324-332. doi: 10.1016/j.jphysparis.2009.07.004 PubMed Abstract | CrossRef Full Text | Google Scholar
Grave de Peralta-Menendez, R., and Gonzalez-Andino, S. L. (2008). "Chapter: Non-invasive estimates of local field potentials for brain-computer interfaces: Theoretical derivation and comparison with direct intracranial recordings, " in Medical Robotics, ed V. Bozovic (Vienna: InTech), 103-116. Google Scholar
Grefkes, C., and Fink, G. R. (2005). The functional organization of the intraparietal sulcus in humans and monkeys. J. Anatomy 207, 3-17. doi: 10.1111/j.1469-7580.2005.00426.x PubMed Abstract | CrossRef Full Text | Google Scholar
Guyon, I., and Elisseeff, A. (2003). An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157-1182. doi: 10.1162/153244303322753616 CrossRef Full Text | Google Scholar
Hoffman, P., Pobric, G., Drakesmith, M., and Ralph, M. A. L. (2012). Posterior middle temporal gyrus is involved in verbal and non-verbal semantic cognition: Evidence from rTMS. Aphasiology 26, 1119-1130. doi: 10.1080/02687038.2011.608838 CrossRef Full Text | Google Scholar
Holdgraf, C. R., Rieger, J. W., Micheli, C., Martin, S., Knight, R. T., and Theunissen, F. E. (2017). Encoding and decoding models in cognitive electrophysiology. Front. Syst. Neurosci. 11:61. doi: 10.3389/fnsys.2017.00061 PubMed Abstract | CrossRef Full Text | Google Scholar
Johnson, M. A., Thompson, S., González-Martínez, J., Park, H. J., Bulacio, J., Najm, I., et al. (2014). Performing behavioral tasks in subjects with intracranial electrodes. J. Visual. Exp. 92:e51947. Google Scholar
Kahana, M. J., Seelig, D., and Madsen, J. R. (2001). Theta returns. Curr. Opin. Neurobiol. 11, 739-744. doi: 10.1016/S0959-4388(01)00278-1 PubMed Abstract | CrossRef Full Text | Google Scholar
Kerr, M. S. D., Sacré, P., Kahn, K., Park, H.-J., Johnson, M., Lee, J., et al. (2017). The role of associative cortices and hippocampus during movement perturbations. Front. Neural Circ. 11:26. doi: 10.3389/fncir.2017.00026 PubMed Abstract | CrossRef Full Text | Google Scholar
Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature 453, 869-878. doi: 10.1038/nature06976 PubMed Abstract | CrossRef Full Text | Google Scholar
Mori, S., Wakana, S., Zijl, P. C. V., and Nagae-Poetscher, L. M. (2005). MRI Atlas of Human White Matter. San Diego, CA: Elsevier. Google Scholar
Mutha, P. K., Haaland, K. Y., and Sainburg, R. L. (2012). The effects of brain lateralization on motor control and adaptation. J. Motor Behav. 44, 455-469. doi: 10.1080/00222895.2012.747482 PubMed Abstract | CrossRef Full Text | Google Scholar
Papadopoulos, A., Sforazzini, F., Egan, G., and Jamadar, S. (2018). Functional subdivisions within the human intraparietal sulcus are involved in visuospatial transformation in a non-context-dependent manner. Human Brain Mapp. 39, 354-368. doi: 10.1002/hbm.23847 PubMed Abstract | CrossRef Full Text | Google Scholar
Pereira, F., Mitchell, T., and Botvinick, M. (2009). Machine learning classifiers and fMRI: A tutorial overview. NeuroImage 45, S199-209. doi: 10.1016/j.neuroimage.2008.11.007 PubMed Abstract | CrossRef Full Text | Google Scholar
Petrides, M., and Pandya, D. N. (1984). Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J. Compar. Neurol. 228, 105-116. doi: 10.1002/cne.902280110 PubMed Abstract | CrossRef Full Text | Google Scholar
Piekema, C., Kessels, R. P., Mars, R. B., Petersson, K. M., and Fernández, G. (2006). The right hippocampus participates in short-term memory maintenance of object-location associations. NeuroImage 33, 374-382. doi: 10.1016/j.neuroimage.2006.06.035 PubMed Abstract | CrossRef Full Text | Google Scholar
Sack, A. T. (2009). Parietal cortex and spatial cognition. Behav. Brain Res. 202, 153-161. doi: 10.1016/j.bbr.2009.03.012 PubMed Abstract | CrossRef Full Text | Google Scholar
Talairach, J., and Bancaud, J. (1973). Stereotaxic approach to epilepsy. Progress Neurol. Surgery 5, 297-354. Google Scholar
Tankus, A., and Fried, I. (2012). Visuomotor coordination and motor representation by human temporal lobe neurons. J. Cognit. Neurosci. 24, 600-610. doi: 10.1162/jocn_a_00160 PubMed Abstract | CrossRef Full Text | Google Scholar
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat. Soc. 58, 267-288. Google Scholar
van Kemenade, B. M., Arikan, B. E., Podranski, K., Steinsträter, O., Kircher, T., and Straube, B. (2018). Distinct roles for the cerebellum, angular gyrus, and middle temporal gyrus in action-feedback monitoring. Cereb. Cortex 29, 1520-1531. doi: 10.1093/cercor/bhy048 PubMed Abstract | CrossRef Full Text | Google Scholar
Ward, L. M. (2003). Synchronous neural oscillations and cognitive processes. Trends Cogn. Sci. 7, 553-559. doi: 10.1016/j.tics.2003.10.012 PubMed Abstract | CrossRef Full Text | Google Scholar
Weiner, K. S., and Zilles, K. (2016). The anatomical and functional specialization of the fusiform gyrus. Neuropsychologia 83, 48-62. doi: 10.1016/j.neuropsychologia.2015.06.033 PubMed Abstract | CrossRef Full Text | Google Scholar
Yamamoto, N., Philbeck, J. W., Woods, A. J., Gajewski, D. A., Arthur, J. C., Potolicchio, S. Jr., et al. (2014). Medial temporal lobe roles in human path integration. PLoS ONE 9:e96583. doi: 10.1371/journal.pone.0096583 PubMed Abstract | CrossRef Full Text | Google Scholar