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Sensorimotor control studies have predominantly focused on how motor regions of

the brain relay basic movement-related information such as position and velocity.

However, motor control is often complex, involving the integration of sensory information,

planning, visuomotor tracking, spatial mapping, retrieval and storage of memories,

and may even be emotionally driven. This suggests that many more regions in the

brain are involved beyond premotor and motor cortices. In this study, we exploited

an experimental setup wherein activity from over 87 non-motor structures of the brain

were recorded in eight human subjects executing a center-out motor task. The subjects

were implanted with depth electrodes for clinical purposes. Using training data, we

constructed subject-specific models that related spectral power of neural activity in six

different frequency bands as well as a combined model containing the aggregation of

multiple frequency bands to movement speed. We then tested the models by evaluating

their ability to decode movement speed from neural activity in the test data set. The

best models achieved a correlation of 0.38 ± 0.03 (mean ± standard deviation). Further,

the decoded speeds matched the categorical representation of the test trials as correct

or incorrect with an accuracy of 70 ± 2.75% across subjects. These models included

features from regions such as the right hippocampus, left and right middle temporal

gyrus, intraparietal sulcus, and left fusiform gyrus across multiple frequency bands.

Perhaps more interestingly, we observed that the non-dominant hemisphere (ipsilateral

to dominant hand) was most influential in decoding movement speed.

Keywords: movement speed, StereoelEctroencEphalography (SEEG), Local Field Potential (LFP), generalized

linear model (GLM), regression, non-dominant hemisphere, non-motor brain regions, Least Absolute Shrinkage

and Selection Operator (LASSO)

1. INTRODUCTION

The underlying neural correlates of movement have captivated neuroscientists throughout history;
however, research has typically focused on the primary, supplementary, and pre-motor cortices.
Areas of the brain outside of these have been less studied or even overlooked and as a result, little is
known about the extent to which these non-motor regions may play a role in motor coordination.
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There are at least two reasons for this gap in the literature.
Movements that would largely engage non-motor regions may
be more complex and thus require cumbersome experimental
setups, and/or capturing activity in these regions requires a
recording modality with large brain coverage and fine spatial
and temporal resolution (Diedrichsen et al., 2005; Logothetis,
2008; González-Martínez et al., 2015). One setup that has been
used is recording scalp EEG from humans while they execute
motor tasks. For example, in Grave de Peralta et al. (2009),
researchers demonstrated that they could accurately classify
which hand subjects would use on a trial-by-trial basis by first
estimating intracranial potentials from the scalp EEG (Grave
de Peralta-Menendez and Gonzalez-Andino, 2008) and then
relating high frequency spectral power of these estimated
signals to hand movement intention. Scalp EEG is advantageous
as it is noninvasive. However, deeper structures governing
cognitive functions that must be recruited for good motor
performance are inaccessible from scalp recordings. There are
several approaches to estimating activity from deeper structures
in the brain from scalp EEG, including source localization; but,
these approaches suffer from smearing of the signals due to skull
conductivity, making them less desirable than directly recording
from the source.

Despite limitations in neural access, it is important to look
at both cortical and subcortical areas of the brain that may
be responsible for supporting motor function. In order for
an action to be successfully accomplished, a goal must be
established, a sequence of steps must be formulated, and a series
of actions must be executed (Grafton and de C. Hamilton,
2007). Furthermore, movement must be continuously controlled
throughout its performance and updated if it is perturbed.
Previous research examining these components has suggested
a hierarchical organization for the processes associated with
movement (Grafton and de C. Hamilton, 2007). Spatial
and sensory information about the external environment are
integrated primarily within areas of the parietal lobe (Cole et al.,
2014); specifically, the intraparietal sulcus plays a well-known
role in merging perceptive and motor elements of “hand-eye”
coordination (Grefkes and Fink, 2005) while the precuneus is
involved in directing attention in space (Cavanna and Trimble,
2006). Fibers of these pathways are then suggested to project to
motor areas of the frontal cortex (Petrides and Pandya, 1984).
While regions of the temporal lobe are not typically considered
to be integral modules of the motor system, several studies
have implicated their role in path integration and planning,
visuomotor tracking, spatial mapping, and kinematic encoding
(Fyhn et al., 2004; Epstein et al., 2007; Yamamoto et al., 2014).
Most notably, a study by Tankus and Fried (2012) demonstrated
that medial temporal lobe structures were significantly activated
during a center-out motor task, suggesting that this activity was
indicative of temporal lobe involvement in the transformation
of visual input to hand movement and may be connected to the
dorsal pathway.

The current study seeks to explore the neurophysiological
underpinnings of non-motor regions in a movement task
through the process of constructing models that relate neural
activity to movement speed. The models are then evaluated by

assessing their ability to predict movement speed solely from
neural activity in non-motor regions. We hypothesize that a
simple generalized linear model structure can address whether
non-motor regions can be used to accurately predict movement
speed. To test our hypothesis, we exploited an experimental
setup wherein eight participants implanted with intracerebral
depth electrodes (i.e., StereoElectroEncephaloGraphy, SEEG),
that covered several brain regions mentioned above, performed
a center-out motor task that cued for various speeds. SEEG is
particularly advantageous because it allows for millisecond-level
recordings as well as direct access to subcortical and superficial
areas of the brain (González-Martínez et al., 2015).

A generalized linear modeling framework was then used
for constructing subject-specific models that predicted the
movement speed on a given trial as a function of combinations
of spectral features computed from SEEG recordings. Seven
different models were compared that used frequency band
oscillations from only (i) theta (4–8Hz), (ii) alpha (8–15Hz),
(iii) beta (15–30Hz), (iv) low gamma (30–60Hz), (v) high
gamma (60–100Hz) activity, (vi) hyper gamma (100–200Hz),
and (vii) a combined model that allowed for a combination of
these frequency bands (Crone et al., 1998a,b; Basar et al., 2000;
Kahana et al., 2001; Gonzalez et al., 2006; Canolty and Knight,
2010). Each model was then evaluated by testing its ability to
decode the movement speed from the measured neural activity.

Our preliminary results corroborate well-established
phenomena and suggest other roles of non-motor regions.
Specifically, we found that using a combination of frequency
bands produced the most accurate estimations out of the seven
possible models. Performance metrics, including correlations
and errors, were computed on a test data set to evaluate the
models selected from cross-validation on training data across
all subjects. We also found similar regions were selected as
features across subjects, including right hippocampus, middle
temporal gyrus, intraparietal sulcus, and left fusiform gyrus.
The functionality of these groups ranges from multisensory
integration to agency. We believe we are mainly capturing
regions involved with visual processing, however, interestingly
our study provides preliminary electrophysiological evidence of
lateralization of the non-dominant hemisphere. In particular,
spectral features from the non-dominant hemisphere (ipsilateral
to dominant hand) were selected more often to decode
movement speed.

2. MATERIALS AND METHODS

2.1. Subjects
SEEG recordings were performed in medically refractory
epileptic patients for the clinical purpose of finding the
Epileptogenic Zone (EZ) for possible resection (Talairach and
Bancaud, 1973). This study did not alter any invasive procedure
as electrode locations were made based on postoperative
measurements independent of this study.

Criteria for subjects undergoing SEEG implantation were
reviewed by clinicians in order to determine whether the subject
would be eligible to enroll in this current study. This review
process allowed for eight individuals over the age of 18 with
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the ability to provide informed consent and to perform the
behavioral task. Subject enrollment was completely voluntary and
all subjects gave informed consent. Alterations to their clinical
care were not made other than the behavioral experiments. The
retrospective data collection of this study was approved by the
Cleveland Clinic Institutional Review Board. Table 1 contains
demographic information for the subjects who participated in
this study.

2.2. StereoElectroEncephaloGraphic
(SEEG) Implantation
Implantation of the SEEG depth electrodes (PMT Corporation,
MN, USA) was performed at the Cleveland Clinic using
co-registered three-dimensional CT and MRI scans (González-
Martínez et al., 2015). Approximately 8–13 depth electrodes were
stereotactically implanted per subjects (Figures 1A,B). Along
each electrode are between 10 and 16 contacts spaced 1.5mm
apart, each with a length of 2mm and a diameter of 0.8mm.
Electrodes were inserted using a robotic surgical implantation
platform (ROSA, Medtech Surgical Inc., USA) in orthogonal
or oblique orientation. This allowed for intracranial recording
from lateral, intermediate, and/or deep cortical and subcortical
structures in a three-dimensional arrangement (González-
Martínez et al., 2015). The day prior to surgery, volumetric
postoperative MRIs (T1, contrasted with Multihance R©,
0.1mmol kg−1) were obtained to postoperative plan safe
electrodes trajectories the day prior to the surgery. Adjustments
to the insertion trajectories were made to avoid vascular
structures. Each electrode contact was labeled according to
the anatomical location from postoperative CT images to
each subject’s postoperative structural MRI scan. Following
implantation surgery, a three-dimensional reconstruction of
the co-registration was produced and visualized in Curry
Neuroimaging Suite (Neuroscan, El Paso, USA) and the location
of each contact manually determined with the agreement of at
least two clinical experts (Figures 1C,D). Electrode placement,
EZ, and electrode coverage for each subject can be found in
Table S1 and Figure S1.

2.3. Electrophysiological Recordings
Neural recordings of Local Field Potential (LFP) activity–from
superficial to deep non-motor brain structures–were collected
onsite at a sampling rate of 2 kHz using clinical electrophysiology

TABLE 1 | Table of the number, demographics, handedness, and the number of

trials for each subject.

Subject Sex Age (years) Handedness Number of trials

1 F 29 L 105

2 M 26 L 76

3 F 41 R 76

4 F 55 R 30

5 F 60 R 113

6 F 37 L 128

7 F 32 R 122

8 M 24 R 117

acquiring system activity (Nihon Kohden 1200, Nihon Kohden
America, USA) in the Epilepsy Monitoring Unit. The recording
sessions used for this study were free of epileptic seizures.

2.4. Motor Task
Subjects performed goal-directed reaching movements with
speed instructions that have been previously described (Johnson
et al., 2014; Breault et al., 2017, 2018, 2019a,b; Kerr et al.,
2017). Movements were made using a robotic manipulandum
from the InMotion ARM Interactive Therapy System (Interactive
Motion Technologies,Watertown,MA, USA) and were displayed
as a cursor on an attached computer screen (Figure 2A).
Subjects used their dominant hand to control the robotic arm,
with handedness listed in Table 1. The interface was prepared
in MATLAB R©(Mathworks, Natick, MA) using MonkeyLogic
(Asaad and Eskandar, 2008).

The goal of the task was to move a cursor to the designated
target at an instructed speed. Speeds were relative to each subject
based on calibration trials of their fastest movements prior to
testing. The task was broken down into several epochs, as shown
as simulated screens in Figure 2B. One session consisted of 120
trials. Each trial began with a speed instruction designated by
the placement of the rectangle relative to the bar; high for fast
and low for slow. The instructed speed is displayed for 1.5 s
(SpeedInst). The fixation epoch was presented in which the
subject was expected to move the yellow cursor to the center
within 7.5 s. After the cursor was in the center, the target was
revealed in one of four locations (ShowTarget): right, left, up,
or down. After a delay period of 2.00± 0.25 s, GoCue began
when the target changed color from gray to green. The subject
was expected to initiate their movement by moving the cursor
within 0.15–2.5 s (MoveOnset) of GoCue or else the trial would
forfeit. After movement onset, the subject had a maximum of
7.5 s to move the cursor to the appointed target. The movement
was considered complete once the subject held the cursor in the
target for 0.50 s (HitTarget). After movement completion, their
speed was calculated and the ratio relative to their calibration
speed as found. This was then compared to the instructed
speed, where their speed must fall between 66.7 ± 13.3% of
their calibrated speed for fast trials or between 33.3 ± 13.3%
of their calibrated speed for slow trials. Their actual speed was
shown as visual feedback relative to the instructed speed by
the placement of a horizontal line across the speed bar and
instructed speed rectangle for 2 s (MoveFeedback). Finally, an
outcomewas displayed for 1 s indicative of whether they correctly
met the instructed speed or not: either a $5 bill (Reward) or a
red “X” over the $5 bill (SpeedFail). Perturbations with random
magnitudes and directions were applied via the robotic arm
immediately entering movement onset to 20% of the trials.
Only non-perturbed trials were considered for the purposes of
this study.

2.5. Data Preparation
The raw electrophysiological and behavioral data were
preprocessed in preparation for model fitting as described
below. Some subjects performed the motor task over multiple
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FIGURE 1 | (A) Example of a final postoperative image of left frontal-temporal-parietal SEEG implantation. Subject shown did not perform task. (B) Three-dimensional

MRI reconstruction showing details of subject’s unique cortical anatomy and the relative position and depth of of implanted electrodes.

GoCue
ShowTarget

HitTarget

MoveOnset

Outcome

SpeedInst

MoveFeedback

1.5 s

0–7.5 s

2 ± .25 s

.15–2.5 s

0.5 s

2 s

1 s

BA

FIGURE 2 | (A) Apparatus set-up of the robotic manipulandum and attached screen, where the visual stimuli for the motor task were displayed. This system allowed

for precise tracking of arm movements over a horizontal plane as the subjects controlled a cursor shown on the screen with the task stimuli. (B) Detailed timeline of

epochs during a single trial shown using simulated screens. The interval of time in which the stimuli were presented are shown below each simulated epoch. Models

were built using the neural activity recorded between MoveOnset and HitTarget.

sessions. In those cases, we chose to only model the first session
as a representative for those subjects.

2.5.1. Neural Data
The neuronal activity from the SEEG electrodes was preprocessed
using spectral analysis. First, the data were filtered using a
Notch filter with a notch located at the fundamental frequency
of 60Hz and the bandwidth at the −1 dB point set to 3Hz.
Next, oscillatory power was calculated using a continuous wavelet
transform with a logarithmic scale vector ranging 1–200Hz
and complex Morlet wavelet with a default radian frequency
of ω0 = 6. Using a time window of 100ms every 50ms, the
instantaneous power spectral density was divided and averaged
over each overlapping time bins (50%) where each 100ms time
bin was labeled using the last temporal index corresponding

to that window. Finally, the averaged power spectral density
was normalized in order to equally weigh all frequencies. This
was done by taking the standard score (z-score) of the natural
logarithm of the power in each frequency bin over the entire
recording session time. All contact recordings were visually
inspected for artifacts. Channels with imperfections such as
broadband effects or abnormal bursts of power were disregarded
for all trials.

The result of preprocessing was spectral data for each
electrode contact over a range of frequencies for the entire
session. These data were used to calculate features that
represented neural activity in the decoding model. Features were
calculated by averaging the neural activity of each electrode
contact in the spectrogram over a range of frequency bins around
a window of time-related to an epoch for each trial. Each feature
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is associated with an electrode contact, label, frequency band, and
time window.

A time window between MoveOnset and HitTarget was
chosen to capture the neural activity modulating during
movement. We used the following ranges of frequencies
commonly referenced in literature to divide the data into
bands: theta (4–8Hz), alpha (8–15Hz), beta (15–30Hz), low
gamma (30–60Hz), high gamma (60–100Hz), and hyper gamma
(100–200Hz).

2.5.2. Behavioral Data
Prior to the task, subjects underwent a calibration epoch where
they were instructed to make 20 fast movements to the right.
Their fastest movement speed was recorded and used to calibrate
trial speeds for the remainder of the session. Trial speed was
computed by dividing the constant length of the straight line
between the center of the center and the center of the target
by the time between MoveOnset and the final HitTarget for
each completed trial. The acquisition system then calculated the
ratio of this trial speed to their calibration speed. This meant
that the speed of each trial was saved as a value between [0, 1],
where 0 represents a trial where the subject did not move and
1 represented a trial in which the subject reached a trial speed
greater than or equal to their calibration speed.

Prior to modeling, speeds were normalized to fit a normal
distribution by taking the standard score of the natural logarithm
of speeds from all completed, unperturbed trials over the entire
session (Figure 3). This left an average of 95.88 ± 33.09 (mean
± standard deviation) trials for modeling. Let Tn denotes the
total number of trials available to build a model for subject n.
Refer to Table 1 for the exact number of trials used for modeling
each subject.

2.6. Decoding Model and Procedure
All electrophysiological modeling and decoding analyses were
conducted offline using custom MATLAB R© scripts. Decoding
is formulated as a linear regression model, in which there
exists a linear relationship between the dependent variable,
speed, and the independent features consisting of the neural
activity from the electrode contacts over various frequency bands
(Holdgraf et al., 2017).

We set out to answer whether neural activity could predict
the speed of each movement. We hypothesized that there exists
a relationship between the neural activity in non-motor brain
regions during movement and the speed of the trial. We tested
this hypothesis by first constructing decoding models developed
purely on a training set and then applying these models to decode
speed on a trial-by-trial basis on a test set. Specifically, we split
the data using 80% of the trials for the training set and the
remaining 20% of the trials for the test set. The training set was
used to extract features and train the linear regression model.
We then applied this model to the test set to decode speed trial-
by-trial. Features were extracted using a data-driven approach
that optimized the hyper-parameter over cross-validation on the
training set. The modeling framework is described below.

2.6.1. Modeling Speed as a Function of Neural

Activity
We constructed subject-specific models to eventually be used to
predict speed from the neural activity across multiple electrode
contacts and frequency bands. In particular, we assumed that
the normalized speed of subject n on trial t, denoted yn(t), is
a random variable with a Gaussian distribution whose mean
depends on a feature vector xn(t) ∈ R

Jn containing Jn features
of neural data that from regions that encode speed. The mean of
the distribution is modeled as follows:

E[yn(t) | xn(t)] = βn0 +

Jn∑

j=1

βnjxnj(t), (1)

where βn0 is a constant representing baseline speed and βnj is a
coefficient that weighs the influence that feature j of subject n,
denoted xnj, has on the movement speed.

2.6.2. Feature Selection and Model Fitting
Spectral power of neural activity in certain frequency bands
has been shown to encode and communicate information at
a population-level in the brain (Ward, 2003). Therefore, we
constructed seven models differentiated by features capturing
the spectral content of neural activity in different frequency
bands. Specifically, the models that were compared used either
(i) theta band features (4–8Hz), (ii) alpha band features (8–
15Hz), (iii) beta band features (15–30Hz), (iv) low gamma band
features (30–60Hz), (v) high gamma band features (60–100Hz)
activity, (vi) hyper gamma band features (100–200Hz) activity, or
(vii) a combination of all frequency bands (Crone et al., 1998a,b;
Basar et al., 2000; Kahana et al., 2001; Gonzalez et al., 2006;
Canolty and Knight, 2010). To compute features from different
frequency bands, we computed a spectrogram for each electrode
contact and each trial. The average neural activity within each
frequency band was treated as an independent feature that could
be incorporated into a model.

In our data set, there were often more possible features than
trials to train on. Therefore, it was essential to limit the number
of features for each model. Picking the number of features to
use is a balancing act. On one hand, having too many features
is not only computationally expensive but also produces models
that are overfitted and poorly generalizable (Guyon and Elisseeff,
2003; Pereira et al., 2009; Holdgraf et al., 2017). On the other
hand, models built with too few features could lead to poor
performance. The goal of feature selection for regression models
is to then pick as few as possible informative features without
being influenced by a priori knowledge.

For these reasons, we utilized a data-driven approach to
select a subset of features for each model. Features were selected
using the Least Absolute Shrinkage and Selection Operator
(LASSO) method. This method attempts to minimize the errors
using regularization, which penalizes the number features with
non-zero coefficients in the model. Therefore, it drives the
coefficients of the uninformative features in the regressionmodel.
It is formally defined as the solution to the l1 optimization

Frontiers in Neuroscience | www.frontiersin.org 5 July 2019 | Volume 13 | Article 715

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Breault et al. Non-motor Brain Regions Decode Speed

Subject 1

0

20

40

60
N

u
m

b
e

r 
o

f 
tr

ia
ls

Subject 2 Subject 3 Subject 4

Subject 5

-5 0 5

Normalized speed

0

20

40

60

N
u

m
b

e
r 

o
f 
tr

ia
ls

Subject 6

-5 0 5

Normalized speed

Subject 7

-5 0 5

Normalized speed

Subject 8

-5 0 5

Normalized speed

FIGURE 3 | Distribution of normalized speeds across all trials for eight subjects with a bin width of one.

problem (Tibshirani, 1996):

min
β

||y− Xβ||2 subject to ||β||1 =

Jn∑

j=1

|βj| 6 λ, (2)

where 0 6 λ is the hyper-parameter that controls the penalty
factor, where large values of λ drive more coefficients to zero.

Specifically, a 10-fold cross-validation procedure was
performed on the training set to select features by grid searching
across all values of λ. The goal was to find the optimal hyper-
parameter (λ̂) that minimizes the Mean Squared Error (MSE).
The procedure began by dividing the training set into 10 subsets
of approximately equal size. In each fold, 9 out of the 10 subsets
were used to train models over gridded values of λ using the
lasso function in MATLAB R©. Essentially, the output of
LASSO is then a vector of coefficients on the feature matrix for
every value of lambda. These fitted models were then used to
estimate the speed on the single subset of trials that were not
used for training. This subset is known as the validation set.
The MSE between the estimated speeds the actual speeds of the
validation set was calculated for every model associated with a
λ. This process was repeated such that every subset was used for
validation. At the end of cross-validation, the average errorMSE
across all folds was calculated for each hyper-parameter value
and λ̂ was chosen to minimize this error.

Finally, the final subset of features was obtained by running
the entire training set through LASSO and selecting the features
with non-zero coefficients at λ̂. To assess the stability of these
features, the entire cross-validation procedure was repeated for
100 different splits of the training set, keeping the test set the
same. Once the model building procedure was validated and
the features were selected, a final model was constructed using
glmfit function in MATLAB R© on the training set.

2.6.3. Evaluating Model Performance
Once a model was constructed via the aforementioned procedure
on training data we evaluated the performance of the said model
by assessing its ability to decode movement speed using neural
activity on a trial-by-trial basis in the test set. Keep t with trial, the
model was used to predict the trial speed for subject n, denoted
as ŷn(t), using Equation 1. To evaluate the performance of a fitted
model on the test set, we used the Pearson correlation coefficient
(R) andMSE to measure goodness-of-fit.

2.6.4. Visualizing Feature Maps
To intuitively understand the range of the significance of the
features found using our analysis, we chose to highlight them
using a human MRI atlas (Mori et al., 2005). This was done by
mapping features from the model to atlas labels. Each feature
represents the neural activity of a physical electrode contact with
an anatomical label prepared by clinicians (section 2.2). These
feature labels were thenmatched to labels from theMori atlas and
templateMRI. Thematched labels were subsequently highlighted
on the template MRI in the representative subject color. Despite
the fact that each electrode contact may have only recorded from
a small portion of a brain region, it is impossible to verify the
consistency of mapping the electrode coordinates to the atlas
coordinates across subjects. Therefore, we chose to highlight the
entire brain region on the template MRI to visualize coverage
across subjects, as opposed to highlighting smaller sections of a
region. Approximately 16.36% of the labels could not be matched
to the atlas, which namely consisted of sulci and opercula. These
labels were disregarded for the purposes of mapping.

To demonstrate the stability of the features for each subject,
we used a tinting system in which each highlighted region was
tinted based on the number of times that region was selected
as a final feature across all 100 iterations of the cross-validation
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procedure discussed in section 2.6.2. Brain regions that were
selected as final features more often were tinted a darker color
and regions that were selected less often were tinted whiter.
Sagittal, axial, and coronal slices were chosen to maximize the
number of highlighted regions shown. Contacts not chosen as a
feature were hatched.

3. RESULTS

Our proposed model building procedure was evaluated for
generalizability and producing accurate predictions on eight
independent subjects (N = 8) consisting of behavioral and neural
data. After training a final model using the features selected
at the optimal hyper-parameter found from cross-validation on
the training set, we evaluated the predictive power of the final
model on the unseen test set. Here, we report the results of
this final model for feature selection on the combined neural
activity from all available brain regions across all frequency
bands. The results for the other models (theta, alpha, beta,
low gamma, high gamma, and hyper gamma) are available in
the Supplementary Materials.

3.1. Model Performance
Figure 4 summarizes performance metrics from cross-validation
for the combinedmodels. Despite the limited number of trials for
each subject in our data set, all subject-specific models performed
well. Figure 4A shows a positive linear relationship between the
actual and predicted speeds over the trials in the test set. The
performance of the final models found across all 100 iterations
had an average R = 0.38 ± 0.03 and average MSE = 1.07 ±

0.09 across all subjects (Figures 4B,C). The best model achieved
the highest R = 0.82 and lowestMSE = 0.36 over the test set.

To get an idea of how well our decoder performed under
the task condition of reaching a speed within the instructed

range predicted speeds were transformed back into the original
[0, 1] range using the mean and standard deviation from the
distribution of the trial speeds. Then, the transform speeds were
converted into categorical representations of correct or incorrect
by applying the speed instruction per trial and compared to
the original outcomes. Our decoding model achieved an average
accuracy of 70.00 ± 2.75% across iterations and subjects, which
is above chance (50%). Our findings suggest that these models
capture a relationship between the neural activity in non-motor
brain regions and speed.

The performance of the remaining six models is demonstrated
in Figure S2. By comparison, all models had roughly the same
amount of error but the combined model had the highest average
correlation, meaning the combined model better predicted speed
over models based on a single frequency band. This was expected
as we believe that the combined model would pick the most
influential features from each frequency band (Figure S3).

3.2. Stability Analysis of Model Features
To reinforce the results of our final model, a stability analysis
was performed to show that the features found during cross-
validation largely overlap with the final features. Features
that were frequently selected during cross-validation and also
appeared in the final model play a consistent role in the model
for decoding speed. Since electrode locations are not equivalent,
we refer to the consistency of subjects sharing a feature with the
same label as the feature being stable.

We represent stability in Figure 5 as the union of features
from the combined models selected during cross-validation and
the final subset of features. Only features that were represented in
at least three subjects were considered. The length of each colored
section of the bar was calculated as the relative number of times
the brain region was selected as a feature across all folds and
iterations for each subject. The color of each section of the bar
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FIGURE 4 | Model Performance. (A) Scatter plot of actual speed vs. predicted speed using the final combined model with the highest R for each subject over 100

iterations on the test trials. Each subject is denoted as a different color point. (B) The average R between the actual speed and predicted speed using the final

combined models across 100 iterations on the test set for eight subjects. Each subject is denoted as a different color point. The mean of the metric is represented by

the black line and one standard deviation is represented by the gray rectangle. (C) The average MSE between the actual speed and predicted speed using the final

combined models across 100 iterations on the test set for eight subjects. Each subject is denoted as a different color point. The mean of the metric is represented by

the black line and one standard deviation is represented by the gray rectangle.
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Combined
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intraparietal sulcus R

insular cortex L

precuneus R

precuneus L

superior temporal gyrus L
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parietal operculum L

middle temporal gyrus R
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FIGURE 5 | Stability Analysis. Stability of features in the combined models for eight subjects, sorted by the fraction of times feature was picked during feature selection

relative to the 100 iterations during 10-fold cross-validation. Each subject is denoted as a different color bar. Length of each colored bar represents the fraction of

times feature was selected relative to the total number of times feature was sampled within each subject. Only features that were selected as a final feature are shown.
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distinguishes each subject. The total length of the bar represents
the relative number of times a brain region was selected, where a
fraction of one would indicate that the brain region was selected
in every fold for every subject that had recordings from that
region across all iterations. Therefore, a feature with a longer
bar can be interpreted as being selected more consistently during
cross-validation. In other words, this feature is considered more
stable since it is more consistently selected to decode speed no
matter how the data is spliced.

Ideally, stable features should appear with a proportion closer
to one and be selected by all subjects who have electrodes in the
same locations. The results of the stability of the combinedmodel
are encouraging. Some variability in features was expected, as
electrode contact locations were not globally consistent across
subjects (Table S1). The top two features were selected for at
least four subjects, meaning that these features are able to decode
speed even in completely different data sets. For example, one of
the top feature, middle temporal gyrus L (L = Left hemisphere),
was identified as a feature for five subjects. Considering there
are eight subject, this region may not appear to be stable
across a population. However, only five of the eight subjects
had an electrode in this region (see Figure S1). Therefore, our
model selected this as a feature for every subject had a contact
in this region. The middle temporal gyrus L is also selected
consistent, appearing in 74.32% of the times it was sampled over
100 iterations.

Since the combined model contains features from all
frequency bands, we were also interested in whether any one
particular frequency band was selected as a feature more often to
decode movement speed. Figure S3 shows the breakdown of the
features split into the frequency bands each feature represents.
Out of all the features selected, features from the beta band
consisted of 22.29% of the total features, followed by theta band
at 21.08%, alpha band at 19.88%, and low gamma at 17.16%. The
least prevalent bands were high and hyper gamma, consisting of
only 10.46 and 9.13%, respectively. These results are consistent
with the frequency band models, in which fewer features were
needed for the models with frequencies found more often in the
combined model.

The conclusion we can draw from Figure 5 is that the features
in the final combined model are relatively stable, meaning
these regions consistently decode speed across a population,
represented by our subjects. For the stability results of the
remaining six models, refer to Figure S4.

3.3. Feature Analysis of Final Model
Since the electrodes were exclusively implanted in brain areas
outside the primary sensorimotor system for all subjects, this
data set provided the unique opportunity to study whether non-
motor brain regions can decode movement characteristics such
as speed. After confirming the stability of model features during
cross-validation, we analyzed the features selected for the final
combined model fitted to the training set used for the stability
analysis. For this, we visualized the selected features on an MRI
and varied the shading based on the number of times the feature
was selected.

Figure 6 summarizes the non-motor brain regions that were
selected as features in the final combined model. These regions
were found by matching the labels of the electrode contacts for
each feature with labels for anMRI atlas labels (Mori et al., 2005).
However, some electrode contact could not be matched to the
atlas. Note that these plots do not represent fMRI signals nor
do they represent the precise location of the electrode. Regions
on the MRI were tinted based on a mapping of the fraction
of times feature was selected in the final combined model over
100 iterations, where lighter regions represent less informative
features. Refer to Figures S5–S10 for the feature maps of the
other six models.

Overall, there was variability in the features selected across
subjects (Figure 5). A majority of the variability is due to the
non-uniform placement of the electrodes across subjects. The
discrepancy could also be caused by the subject-specific model
fitting process. Subjects with fewer trials are more prone to
overfitting and will not have as many features as other subjects.

4. DISCUSSION

In this study, we sought to explore whether there exists a
relationship between non-motor regions (outside the primary
sensorimotor pathways) and movement in our SEEG data set.
Linear decoding models were constructed from the data to find
the relationship between the movement speed as a function of
spectral content in measured neural activity during movement.
We chose seven types of models based on neural activity power
in specific frequency bands (theta, alpha, beta, low gamma,
high gamma, hyper gamma, and combined) to study using
recordings from eight independent subjects. The final model
using a combination of features from different frequency bands
had the highest correlation and one of the lowest errors of all
seven models. We found speed encoding brain regions consistent
with current knowledge as well as evidence that regions in the
non-dominant hemisphere are significantly involved.

Our results suggest that brain areas encoding movement
speed represent the neural correlates of cognitive components
throughout the sensorimotor pathway. While the primary areas
selected by the model–right hippocampus, left and right Middle
Temporal Gyrus (MTG), left and right IntraParietal Sulcus (IPS),
and left fusiform gyrus have been implicated in a wide variety of
tasks, we believe that their appearance in the current study may
further add evidence to their role in motor control.

The role of the parietal lobe structures in the sensorimotor
pathway has been extensively documented in both human
and non-human primates through lesion and imaging
studies (Freund, 2001). The IPS, in particular, has demonstrated
its involvement in spatial cognition and the integration of
multisensory stimuli (Grefkes and Fink, 2005; Gottlieb, 2007;
Sack, 2009). In the motor task at hand, the subject sees the target
at a random location on the screen and must navigate their
cursor to that location while regulating their speed in accordance
with their initial instructions. By this process, the subject must
direct and keep their attention on the location of the goal in
order to create an internal mental representation of a path while
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FIGURE 6 | Feature Analysis. Map of features selected for the final combined model found using the test data for eight subjects, with subject numbers labeled

vertically and handedness in parentheses. The white lines in each slice represents at which slice in the other viewpoints were taken. Electrode contacts selected as

features were matched to labels from the Mori atlas (Mori et al., 2005). Brain regions that matched the feature labels were then highlighted on the corresponding MRI

template used by the atlas. Regions were tinted based on how frequently it was selected as a final feature over 100 iterations, where regions close to zero (i.e., rarely

selected as a final feature) are tinted whiter and regions close to one (i.e., often selected as a final feature) retain the original color. Not all features could be matched to

an atlas label. Regions not selected as a final feature are filled in using a hatched gray area. These maps do not represent fMRI signals nor do they represent the exact

location of the electrodes.
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transferring that representation to external action and object
(i.e., the cursor) and maintaining their intended course.

The suggested involvement of parietal structures by ourmodel
is consistent with previous visual search studies in non-human
primates. These have shown how neurons of the right inferior
parietal lobe and the surrounding area are activated in the
process of bringing and holding task-related information to
attention (Gottlieb, 2007). While the establishment of a path
toward a goal (i.e., motor planning) occurs primarily before the
onset of the movement and is outside the scope of this current
study, adherence to this path is monitored throughout the course
of movement by continuously updating eye movement and the
spatial location of the object under manipulation.

This continual update of visuospatial information and
integration into external action is mirrored in a preliminary study
by Papadopoulos et al. (2018) that suggests evidence of the IPS as
a “general purpose,” non-context dependent mediator in object-
based visuospatial transformation. The “transformation” in our
current center-out task is represented by the interpretation of
momentary visual information (i.e., object/cursor location) with
relation to the final goal and transference of this information
into regulated external action (i.e., movement that is either
fast or slow). It is also indicated that the connectivity of
substructures in the IPS to the occipital cortex, adjacent parietal
structures, and frontal networks associated with action afford
the IPS a multicomponent-integration role in the early stages
of the overall sensorimotor-pathway as it relates to hand-eye
coordination (Culham and Valyear, 2006). In this manner, the
IPS is then responsible for directing neural information from
multiple integrative interfaces to other areas of the brain for
further processing and interpretation.

While the exact function of the MTG is not entirely agreed
upon, it has been undoubtedly shown in the processing of
semantic cognition and other comprehensive functions related
to language (Binder et al., 2009). Hoffman et al. (2012) expanded
upon this notion, demonstrating a functional role of the MTG in
non-verbal semantic processing as well. A separate study has also
suggested an ancillary role in regard to discerning discrepancies
in movement tasks and intersensory conflict (van Kemenade
et al., 2018). This study also proposed that the MTG (along
with the angular gyrus) might be important in the process of
action-feedback monitoring by establishing a sense of agency
over a given action. The significant selection of the MTG by
the models may reflect internal interpretation, discrimination, or
maintenance of the “fast” or “slow” instruction given. Providing
some overlay with theories of semantic cognition, it is possible
that the activity change in MTG in our movement task may
be responsible for transferring the position of the bar (top or
bottom) into its meaning within the context of the task (fast
or slow, respectively). It is also possible that this MTG activity
relates to the monitoring of the speed of the cursor and ensuring
that adherence to the correct speed instruction is preserved.
Although extrapolative, considering the role of the MTG in
detecting agency toward actions, we suggest that the measured
activity might the active attribution of one’s agency onto the
cursor itself. Because the movement of the cursor is not directly
a part of the participant but is nonetheless under their control,

an implicit association must be made in order to establish that
it is an extension of one’s own movement. However, given that
the MTG is more heavily activated in the detection of agency-
violations and that a mismatch manipulation was not included in
the study, this claim necessitates significant follow-up.

The selection of the fusiform gyrus in this context seems
initially surprising, as the area is typically associated with
functions of visual processing (Weiner and Zilles, 2016). Because
of this, we believe this significant involvement in encoding speed
is likely related primarily to the visual component of the task.
Although, it is interesting to consider that the fusiform is located
in close proximity to the parahippocampal gyrus, a structure
whose function in spatial navigation tasks is well-known (Epstein
et al., 2007). Though, a similar study on this data set has
also implicated the involvement of the fusiform gyrus to speed
(Breault et al., 2017).

Another important observation worth mentioning is that
the model primarily selected structures of the non-dominant
hemisphere in all but two of the subjects, implicating a
lateralized encoding of movement speed. A thorough review by
Mutha et al. (2012), notes lateralization of movement-related
mechanisms into the right and left hemispheres and behavioral
differences between the dominant and non-dominant arm but
does not explicitly mention how these differences may carry
over to hemisphere dominance, when this may be variant
across individuals. Nonetheless, the authors suggest that the left
hemisphere is primarily utilized in the learning of new sequences
subserved by the ability to plan actions and that the right
hemisphere are important for updating actions and stopping at
a goal position. If the mechanisms observed in this article follow
lateralization effects the same way that other highly lateralized
cognitive functions (like language) do, then the preponderance of
non-dominant structures in our study may be representative of
the action-feedback monitoring activity component mentioned
above and the target/goal-oriented nature of the motor task. One
exception to lateralization is the finding of the right hippocampus
as the top stable feature in both left- and right-handed subjects.
The right hippocampus is thought to be more heavily involved
the binding of visuospatial features and active maintenance of
spatial information than the left (Piekema et al., 2006). It is
important to note that 6 out of 8 of our subjects were implanted
in their non-dominant hemisphere. Our results suggest that non-
dominant regions are encoding speed. However, we cannot make
any statements about the role of dominant hemisphere play in
speed encoding due to our sampling bias.

The suggestions relating to the functional mechanisms
of these brain regions cannot be taken as much more
than tentative speculation based on the current literature.
Further research to validate the usefulness of the subject-
specific models and to elucidate the particular roles of these
brain regions during movement would require individual
manipulation of the cognitive variables to examine if the models
generated similar results. Furthermore, the models can only
select the structures that are directly sampled and cannot
extrapolate beyond them, bringing into question whether or
not the same areas would be selected to equal degrees across
all subjects. Finally, we believe that the recorded activity
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originates from a localized area surrounding each contact,
and is not a byproduct of volume conduction from low
frequency activity generated by neighboring motor regions
due to the high resistance by the extracellular medium
(Grave de Peralta-Menendez and Gonzalez-Andino, 2008).

To conclude, we successfully built a model that decodes
speed from non-motor regions. The results of this preliminary
exploration are in line with current literature and propose
a re-examination of non-motor brain regions and their role
in motor control. In the future, we would like to elaborate
on the model proposed here. One variation could be on
either the feature vector, such as using the neural activity of
other epochs such as planning period or adding complexities
to features such as information from previous trials or
trying other feature selection methods such as wrappers
(Guyon and Elisseeff, 2003; Pereira et al., 2009).
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