[en] Honey, a complex product made by bees, represents a rich natural
source of simple carbohydrates. The characteristic flavor, health
benefits, and high economic value of honey depend on its origin
and production methods. Therefore, labels have been developed
to recognize honey quality linked to origin or production method,
in order to inform consumers about these specific determinants.
This review aims to deepen the knowledge of honey quality linked
to the origin and to present an overview of the literature concern-
ing the methods to determine its authenticity. Legislative aspects
and the general parameters required for honey generic quality are
presented, as well as honey quality control methods with emphasis
on the profiling determination.
Mărghitaş, Liviu Alexandru; University of Agricultural Sciences and Veterinary Medicine, Cluj- Napoca, Romania > Departement of Apiculture and Sericulture
Dezmirean, Daniel Severus; University of Agricultural Sciences and Veterinary Medicine, Cluj- Napoca, Romania > Departement of Apiculture and Sericulture
Bobiş, Otilia; University of Agricultural Sciences and Veterinary Medicine, Cluj- Napoca, Romania > Departement of Apiculture and Sericulture
Abbas, Ouissam; Walloon Agricultural Research Centre, Gembloux, Belgium ; Food and Feed Quality Unit
Danthine, Sabine ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > SMARTECH
Francis, Frédéric ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Gestion durable des bio-agresseurs
Haubruge, Eric ; Université de Liège - ULiège > Gestion durable des bio-agresseurs
Nguyen, Bach Kim ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Gestion durable des bio-agresseurs
Language :
English
Title :
Labeling Regulations and Quality Control of Honey Origin: A Review
Ransome, H. M.,;. The Sacred Bee in Ancient Times and Folklore; Dover Publications: Mineola, New York, 2004.
Crittenden, A. N.,;. The Importance of Honey Consumption in Human Evolution. Food Foodways. 2011, 19, 257–273. DOI: 10.1080/07409710.2011.630618.
Abdulla, C. O.,; Ayubi, A.,; Zufiquer, F.,; Santhanam, G.,; Ahmed, M. A. S.,; Deeb, J., Myth Explodes: Infant Botulism following Honey Ingestion. BMJ Case Rep. 2012, 2012, bcr1120115153–bcr1120115153. DOI: 10.1136/bcr.11.2011.5153.
Zmijewska, E.,; Teper, D.,; Linkiewicz, A.,; Sowa, S., Pollen from Genetically Modified Plants in Honey - Problems with Quantification and Proper Labeling. J. Apic. Sci. 2013, 57, 5–19. DOI: 10.2478/JAS-2013-0013.
Villanueva-Gutiérrez, R.,; Echazarreta-González, C.,; Roubik, D. W.,; Moguel-Ordóñez, Y. B., Transgenic Soybean Pollen (glycine Max L.) In Honey from the Yucatán Peninsula, Mexico. Sci. Rep. 2014, 4, 4022. DOI: 10.1038/srep04022.
Michaud, V.,;. Antibiotic Residues in Honey - the FEEDM View. Apiacta. 2005, 40, 52–54.
Ochi, T.,;. Former Japanese Beekeeper Speaks Out about Antibiotics in Chinese Honey [2]. Am. Bee J. 2005, 145, 937–938.
Korkmaz, S. D.,; Kuplulu, O.,; Cil, G. I.,; Akyuz, E., Detection of Sulfonamide and Tetracycline Antibiotic Residues in Turkish Pine Honey. Int. J. Food Prop. 2017, 20(sup1), S50–S55. DOI: 10.1080/10942912.2017.1288135.
Cuevas-Glory, L. F.,; Pino, J. A.,; Santiago, L. S.,; Sauri-Duch, E., A Review of Volatile Analytical Methods for Determining the Botanical Origin of Honey. Food Chem. 2007, 103, 1032–1043. DOI: 10.1016/j.foodchem.2006.07.068.
Silici, S.,;. Determination of Volatile Compounds of Pine Honeys. Turkish J. Biol. 2011, 35, 641–645. DOI: 10.3906/biy-1009-112.
Bianchin, J. N.,; Nardini, G.,; Merib, J.,; Dias, A. N.,; Martendal, E.,; Carasek, A., Screening of Volatile Compounds in Honey Using a New Sampling Strategy Combining Multiple Extraction Temperatures in a Single Assay by HS-SPME–GC–MS. Food Chem. 2014, 145, 1061–1065. DOI: 10.1016/j.foodchem.2013.08.139.
Pattamayutanon, P.,; Angeli, S.,; Thakeow, P.,; Abraham, J.,; Disayathanoowat, T.,; Chantawannakul, P., Volatile Organic Compounds of Thai Honeys Produced from Several Floral Sources by Different Honey Bee Species. Plos One. 2017. DOI: 10.1371/journal.pone.0172099.
Alvarez-Suarez, J. M.,; Tulipani, S.,; Romandini, S.,; Vidal, S. A.,; Battino, M., Methodological Aspects about Determination of Phenolic Compounds and in Vitro Evaluation of Antioxidant Capacity in the Honey: A Review. Curr. Anal. Chem. 2009, 5, 293–302. doi: 10.2174/157341109789077768.
Pyrzynska, C.,; Biesaga, M., Analysis of Phenolic Acids and Flavonoids in Honey. Trac-Trends Anal. Chem. 2009, 28, 893–902. DOI: 10.1016/j.trac.2009.03.015.
Ciulu, M.,; Spano, N.,; Pilo, M. I.,; Sanna, G., Recent Advances in the Analysis of Phenolic Compounds in Unifloral Honeys. Molecules. 2016, 21(451), 451. DOI: 10.3390/molecules21040451.
Cianciosi, D.,; Forbes-Hernández, T. Y.,; Afrin, S.,; Gasparrini, M.,; Reboredo-Rodriguez, P.,; Manna, P. P.,; Zhang, J.,; Bravo Lamas, L.,; Martínez Flórez, S.,; Agudo Toyos, P.,; et al. Phenolic Compounds in Honey and Their Associated Health Benefits: A Review. Molecules. 2018, 23, 2322. DOI: 10.3390/molecules23092322.
Pohl, P.,;. Determination of Metal Content in Honey by Atomic Absorption and Emission Spectrometries. Trac-Trends Anal. Chem. 2009, 28, 117–128. DOI: 10.1016/j.trac.2008.09.015.
Uršulin-Tristenjak, N.,; Levanić, D.,; Primorac, L.,; Bošnir, J.,; Vahčić, N.,; Šarić, G., Mineral Profile of Croatian Honey and Differences Due to Its Geographic Origin. Czech J. Food Sci. 2015, 33, 156–164. DOI: 10.17221/502/2014-CJFS.
Altun, S. K.,; Dinç, H.,.,; Paksoy, N.,; Karaçal Temamoğullari, F.,; Savrunlu, M., Analyses of Mineral Content and Heavy Metal of Honey Samples from South and East Region of Turkey by Using ICP-MS. Int. J. Anal. Chem. ID 6391454. 2017. DOI: 10.1155/2017/6391454.
Kaskoniene, V.,; Venskutonis, P. R., Floral Markers in Honey of Various Botanical and Geographic Origins: A Review. Compr. Rev. Food Sci. Food Saf. 2010, 9, 620–634. DOI: 10.1111/j.1541-4337.2010.00130.x.
Soares, S.,; Amaral, J. S.,; Oliveira, A. B.;. P. P.,; Mafra, I., A Comprehensive Review on the Main Honey Authentication Issues: Production and Origin. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1072–1100. DOI: 10.1111/1541-4337.12278.
Vanhanen, L.,; Emmertz, A.,; Savage, G., Mineral Analysis of Mono-floral New Zealand Honey. Food Chem. 2011, 128, 236–240. DOI: 10.1016/j.foodchem.2011.02.064.
Stankovska, E.,; Stafilov, T.,; Šajn, R., Monitoring of Trace Elements in Honey from the Republic of Macedonia by Atomic Absorption Spectrometry. Environm. Monit. Assess. 2008, 142, 117–126. DOI: 10.1007/s10661-007-9913-x.
Singh, C.,; Shubharani, R.,; Sivaram, V., Assessment of Heavy Metals in Honey by Atomic Absorption Spectrometer. World J. Pharm. Pharmaceut. Sci. 2014, 3, 509–515.
Stecka, H.,; Jedryczko, D.,; Welna, M.,; Pohl, P., Determination of Traces of Copper and Zinc in Honeys by the Solid Phase Extraction Pre-concentration Followed by the Flame Atomic Absorption Spectrometry Detection. Environ. Monit. Assess. 2014, 186, 6145–6155. DOI: 10.1007/s10661-014-3845-z.
Aliferis, K. A.,; Tarantilis, P. A.,; Harizanis, P. C.,; Alissandrakis, E., Botanical Discrimination and Classification of Honey Samples Applying Gas Chromatography/mass Spectrometry Fingerprinting of Headspace Volatile Compounds. Food Chem. 2010, 121, 856–862. DOI: 10.1016/j.foodchem.2009.12.098.
Manyi-Loh, C. E.,; Ndip, R. N.,; Clarke, A. M., Volatile Compounds in Honey: A Review on Their Involvement in Aroma, Botanical Origin Determination and Potential Biomedical Activities. Int. J. Mol. Sci. 2011, 12, 9514–9532. DOI: 10.3390/ijms12129514.
Robotti, E.,; Campo, F.,; Riviello, M.,; Bobba, M.,; Manfredi, M.,; Mazzucco, E.,; Gosetti, F.,; Calabrese, G.,; Sangiorgi, E.,; Marengo, E., Optimization of the Extraction of the Volatile Fraction from Honey Samples by SPME-GC-MS, Experimental Design and Multivariate Target Functions. J. Chem. 2017, 14. article ID 6437857, doi: 10.1155/2017/6437857.
Özkök, A.,; Sorkun, K.,; Salih, B., The Microscopic and GC-MS Analysis of Turkish Honeydew (pine) Honey. Hacettepe J. Biol. & Chem. 2016, 44, 375–383. DOI: 10.15671/HJBC.2016.117.
Arraez-Román, D.,; Gómez-Caravaca, A. M.,; Gómez-Romeró, M.,; Segura-Carretero, A.,; Fernandez-Gutiérrez, A., Identification of Phenolic Compounds in Rosemary Honey Using Solid-phase Extraction by Capillary Electrophoresis–Electrospray Ionization-mass Spectrometry. J. Pharm. Biomed. Anal. 1648–1656, 2006(41). DOI: 10.1016/j.jpba.2006.02.035.
Beretta, G.,; Caneva, E.,; Facino, R. M., Kynurenic Acid in Honey from Arboreal Plants: MS and NMR Evidence. Planta Med. 2007, 73, 1592–1595. DOI: 10.1055/s-2007-993740.
Terrab, A.,; Hernanz, D.,; Heredia, F. J., Inductively Coupled Plasma Optical Emission Spectrometric Determination of Minerals in Thyme Honeys and Their Contribution to Geographical Discrimination. J. Agric. Food Chem. 2004, 52, 3441–3445. DOI: 10.1021/jf035352e.
Aghamirlou, H. M.,; Khadem, M.,; Rahmani, A.,; Sadeghian, M.,; Mahvi, A. H.,; Akbarzadeh, A.,; Nazmara, S., Heavy Metals Determination in Honey Samples Using Inductively Coupled Plasma-optical Emission Spectrometry. J. Environm. Health Sci. Eng. 2015, 1, 13–39. doi: 10.1186/s40201-015-0189-8.
Oroian, M.,; Amariei, S.,; Leahu, A.,; Gut, G., Multi-Element Composition of Honey as a Suitable Tool for Its Authenticity Analysis. Polish J. Food Nutr. Sci. 2015, (2015(65), 93–100. DOI: 10.1515/pjfns-2015-0018.
Solayman, M.,; Islam, A.,; Paul, S.,; Ali, Y.,; Khalil, I.,; Alam, N.,; Gan, S. H., Physicochemkical Properties, Minerals, Trace Elements and Heavy Metals in Honey of Different Origins: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 219–233. DOI: 10.1111/1541-4337.12182.
Nozal Nalda, M. J.,; Bernal Yague, J. L.,; Diego Calva, J. C.,; Martin Gomez, M. T., Classifying Honeys from the Soria Province of Spain via Multivariate Analysis. Anal. Bioanal. Chem. 2005, 382, 311–319. DOI: 10.1007/s00216-005-3161-0.
Corradini, C.,; Cavazza, A.,; Bignardi, C., High-Performance Anion-Exchange Chromatography Couypled with Pulsed Electrochemical Detection as a Powerful Tool to Evaluate Carbohidrates of Food Interest: Principles and Applications. Int. J. Carb. Chem. 2012, 13. ID 487564, doi: 10.1155/2012/487564.
Tuberoso, C. I. G.,; Bifulco, E.,; Caboni, P.,; Cottiglia, F.,; Cabras, P.,; Floris, I., Floral Markers of Strawberry Tree (arbutus Unedo L.) Honey. J. Agric. Food Chem. 2010, 58, 384–389. DOI: 10.1021/jf9024147.
Oliveira, R.,; Teixeira, E.,; Carneiro, C.,; Monteiro, M. L.,; Conte, C.,; Oliveira, E. F., Detection of Honey Adulteration of High Fructose Corn Syrup by Low Field Nuclear Margnetic Resonance (LF1H NMR). J. Food Eng. 2014, 135, 39–43. DOI: 10.10.16/j.foodeng.2014.03.009.
Popescu, R.,; Geana, E. I.,; Dinca, O. R.,; Sandru, C.,; Costinel, D.,; Ionete, R. E., Characterization of the Quality and Floral Origin of Romanian Honey. Anal. Lett. 2015, 49, 411–422. DOI: 10.1080/00032719.2015.1057830.
Fernández Pierna, J. A.,; Abbas, O.,; Dardenne, P.,; Baeten, V., Discrimination of Corsican Honey by FT-Raman Spectroscopy and Chemometrics. Biotechnol. Agron. Soc. Environ. 2011, (15), 75–84.
Tahir, H. E.,; Xiaobo, Z.,; Zhihua, L.,; Jiyong, S.,; Zhai, X.,; Wang, S.,; Mariod, A. A., Rapid Prediction of Phenolic Compounds and Antioxidant Activity of Sudanese Honey Using Raman and Fourier Transform Infrared (FT-IR) Spectroscopy. Food Chem. 2017, 226, 202–211. DOI: 10.1016/j.foodchem.2017.01.024.
Etzold, E.,; Lichtgenberg-Kraag, B., Determination of the Botanical Origin of Honey by Fourier-transformed Infrared Spectroscopy: An Approach for Routine Analysis. Eur. Food Res. Technol. 2008, 227, 579–586. DOI: 10.1007/s00217-007-0759-9.
Woodcock, T.,; Downey, G.,; Kelly, J. D.,; O’Donnell, C., Geographical Classification of Honey Samples by Near-infrared Spectroscopy: A Feasability Study. J. Agric. Food Chem. 2007, 55, 9128–9134. DOI: 10.1021/jf072010q.
Li, Y.,; Yang, H., Honey Discrimination Using Visible and Near-Infrared Spectroscopy, ISRN Spectrosc, 2012, Article ID 487040, DOI.10.5402/2012/487040
Karoui, R.,; Dufour, E.,; Bosset, J. O.,; De Baerdemaeker, J., The Use of Front Face Fluorescence Spectroscopy to Classify the Botanical Origin of Honey Samples Produced in Switzerland. Food Chem. 2007, 101, 314–323. DOI: 10.1016/j.foodchem.2006.01.039.
Lenhardt, L.,; Zeković, I.,; Dramićanin, T.,; Dramićanin, M. D.,; Bro, R., Determination of the Botanical Origin of Honey by Front-face Synchronous Fluorescence Spectroscopy. Appl. Spectrosc. 2014, 68, 557–563. DOI: 10.1366/13-07325.
Anklam, E.,;. A Review of the Analytical Methods to Determine the Geographical and Botanical Origin of Honey. Food Chem. 1998, 63, 549–562. DOI: 10.1016/S0308-8146(98)00057-0.
Milojković Opsenica, D.,; Lušić, D.,; Tešić, Ž., Modern Analytical Techniques in the Assessment of the Authenticity of Serbian Honey. Arh. Hig. Rada Toksikol. 2015, 66, 233–241. DOI: 10.1515/aiht-2015-66-2721.
Pita-Calvo, C.,; Guerra-Rodríguez, M. E.,; Vázquez, M., A Review of the Analytical Methods Used in the Quality Control of Honey. J. Agric. Food Chem. 2017, 65, 690–703. DOI: 10.1021/acs.jafc.6b04776.
Trifković, J.,; Andrić, F.,; Ristivojević, P.,; Guzelmeric, E.,; Yesilada, E., Analytical Methods in Tracing Honey Authenticity. J. AOAC Int. 2017, 100, 827–839. DOI: 10.5740/jaoacint.17.0142.
Cazes-Valette, G.,;. Le Comportement Du Consommateur Décodé Par L’anthropologie, Le Cas Des Crises De La Vache Folle. Rev. Franç. Market. 2001, 183/184, 99–113.
Sylander, B.,;. Rapport Sur La Notion De Qualité–Conseil National De l’Alimentation; National Food Council: Paris, 2001.
Codex Alimentarius. Revised Codex Standard for Honey, Codex STAN 12–1981, Rev. 1 (1987), Rev. 2. 2001.
EU Council Directive 2001/110/CE concerning honey Offic. J. Eur. Comm 2002, L10 (47–52), 47–52.
Giorgi, A.,; Madeo, M.,; Braumgartner, J.,; Lozzia, G. C., The Relationship between Phenolic Content, Pollen Diversity, Physicochemical Information and Radical Scavenging Activity in Honey. Molecules. 2011, 16, 336–347. DOI: 10.3390/molecules16010336.
Kelly, S.,; Heaton, K.,; Hoogewerff, J., Tracing the Geographical Origin of Food: The Application of Multi-element and Multi-isotope Analysis. Trends Food Sci. Technol. 2005, 16, 555–567. DOI: 10.1016/j.tifs.2005.08.008.
EC Agriculture and food: Quality policy. European Commissions, Brussels, 2006a.
Door Database. Data Base of Protected Product Name. In: http://ec.europa.eu/agriculture/quality/door/list.html.
Bogdanov, S.,; Martin, P.,; Lullmann, C.,; Borneck, R.,; Flamini, C.,; Morlot, M.,; Lheritier, J.,; Vorwohl, G.,; Russmann, H.,; Persano, L.,;; et al. Harmonised Methods of the European Honey Commission. Apidologie. 1997, 28(SPEC.ISS), 1–59.
Kerkvliet, J. D.,; Shrestha, M.,; Tuladhar, K.,; Manandhar, H., Microscopic Detection of Adulteration of Honey with Cane Sugar and Cane Sugar Products. Apidologie. 1995, 26, 131–139. hal-00891253 DOI: 10.1051/apido:19950206.
Gonzalez Martin, I.,; Marques Macias, E.,; Sanchez Sanchez, J.,; Gonzalez Rivera, B., Detection of Honey Adulteration with Beet Sugar Using Stable Isotope Methodology. Food Chem. 1998, 61, 281–286. DOI: 10.1016/S0308-8146(97)00101-5.
Irudayaraj, J.,; Sivakesava, S., Detection of Adulteration in Honey by Discriminant Analysis Using FTIR Spectroscopy. Trans. ASAE. 2001, 44, 643–650. DOI: 10.13031/2013.6092.
Popa, M.,; Axinte, R.,; Varvara, S., Considerations regarding the Quality of Honey on Heating and Storage - Changes in Hydroxymethylfurfuraldehyde Content of the Honey from Transylvania (romania). J. Environm. Prot. Ecol. 2010, 11, 555–561.
Du, X.,; Wu, L.,; Xue, X.,; Chen, L.,; Li, Y.,; Zhao, J.,; Cao, W., Rapid Screening of Multiclass Syrup Adulterants in Honey by Ultra-high Performance Liquid Chromatography/quadrupole Time-of-flight Mass Spectrometry. J. Agric. Food Chem. 2015, 63, 6614–6623. DOI: 10.1021/acs.jafc.5b01410.
Di Bella, G.,; Lo Turco, V.,; Potorti, A. G.,; Bua, G. D.,; Fede, M. R.,; Dugo, G., Geographical Discrimination of Italian Honey by Multi-element Analysis with a Chemometric Approach. J. Food Comp. Anal. 2015, 44, 25–35. DOI: 10.1016/j.jfca.2015.05.003.
Manning, L.,; Soon, J. M., Developing Systems to Control Food Adulteration. Food Policy. 2014, 49, 23–32. DOI: 10.1016/j.foodpol.2014.06.005.
Luo, D.,; Luo, H.,; Dong, H.,; Xian, Y.,; Guo, X.,; Wu, Y., Hydrogen (2H/1H) Combined with Carbon (13C/12C) Isotope Ratios Analysis to Determine the Adulteration of Commercial Honey. Food Anal. Meth. 2016, 9(9), 255–262. DOI: 10.1007/s12161-015-0202-y.
Persano Oddo, L.,; Piro, R.,; Bruneau, E.,; Guyot-Declerck, C.,; Ivanov, T.,; Piskulová, J.,; Ruoff, K., Main European Unifloral Honeys: Descriptive Sheets. Apidologie. 2004, 35(Suppl. 1), 38–81. DOI: 10.1051/apido:2004049.
Oroian, M.,; Amariei, S.,; Escheriche, I.,; Leahu, S.,; Damian, C.,; Gut, G., Chemical Composition and Temperature Influence on the Rheological Behaviour of Honeys. Int. J. Food Prop. 2014, 17, 2228–2240. DOI: 10.1080/10942912.2013.791835.
von der Ohe, W.,; Beckh, G.,; Camps, G.,; von der Ohe, K., Contribution to Harmonization of Labeling the Botanical Origin “wild Flowers Honey. Dt. Lebensm. Rundsch. 2006, 102, 365–368.
Karabournioti, S.,; Thrasyvoulou, A.,; Eleftheriou, E. P., A Model for Predicting Geographic Origin of Honey from the Same Floral Source. J. Apic. Res. 2006, 45, 117–124. DOI: 10.1080/00218839.2006.11101329.
Herrero, B.,; Valencia-Barrera, R. M.,; San Martin, R.,; Pando, V., Characterization of Honeys by Melissopalynology and Statistical Analysis. Can. J. Plant Sci. 2002, 82, 75–82. DOI: 10.4141/P00-187.
Pires, J.,; Estevinho, M. L.,; Feas, X.,; Cantalapiedra, J.,; Iglesias, A., Pollen Spectrum and Physico-chemical Attributes of Heather (erica Sp.) Honeys of North Portugal. J. Sci. Food Agric. 1862-1870, 2009(89). DOI: 10.1002/jsfa.3663.
Sanchez, V.,; Baeza, R.,; Ciappini, C.,; Zamora, M. C.,; Chirife, J., Comparison between Karl Fischer and Refractometric Method for Determination of Water Content in Honey. Food Control. 2010, 21, 339–341. DOI: 10.1016/j.foodcont.2008.08.022.
Cereser Camara, V.,; Laux, D., Moisture Content in Honey Determination with a Shear Ultrasonic Reflectometer. J. Food Eng. 2010, 96, 93–96. DOI: 10.1016/j.jfoodeng.2009.06.049.
Chirife, J.,; Zamora, M. C.,; Motto, A., The Correlation between Water Activity and % Moisture in Honey: Fundamental Aspects and Application to Argentine Honeys. J. Food Eng. 2006, 72, 287–292. DOI: 10.1016/j.jfoodeng.2004.12.009.
Abramovič, H.,; Jamnik, M.,; Burkan, L.,; Kač, M., Water Activity and Water Content in Slovenian Honeys. Food Control. 2008, 19, 1086–1090. DOI: 10.1016/j.foodcont.2007.11.008.
Gleiter, R. A.,; Horn, H.,; Isengard, H. D., Influence of Type and State of Crystallisation on the Water Activity of Honey. Food Chem. 2006, 96, 441–445. DOI: 10.1016/j.foodchem.2005.03.051.
Serin, S.,; Turhan, K. N.,; Turhan, M., Correlation between Water Activity and Moisture Content of Turkish Flower and Pine Honeys. Food Sci. Technol. Campinas. 2018, 38, 238–243. DOI: 10.1590/1678-457X.31716.
Bertoncelj, J.,; Doberšek, U.,; Jamnik, M.,; Golob, T., Evaluation of the Phenolic Content, Antioxidant Activity and Colour of Slovenian Honey. Food Chem. 2007, 105, 822–828. DOI: 10.1016/j.foodchem.2007.01.060.
Acquarone, C.,; Buera, P.,; Elizalde, B., Pattern of pH and Electrical Conductivity upon Honey Dilution as a Complementary Tool for Discriminating Geographical Origin of Honeys. Food Chem. 2007, 101, 95–703. DOI: 10.1016/j.foodchem.2006.01.058.
Finola, M. S.,; Lasagno, M. C.,; Marioli, J. M., Microbiological and Chemical Characterization of Honeys from Central Argentina. Food Chem. 1649-1653, 2007(100). DOI: 10.1016/j.foodchem.2005.12.046.
Chakir, A.,; Romane, A.,; Marcazzan, G. L.,; Ferrazzi, P., Physicochemical Properties of Some Honeys Produced from Different Plants in Morocco. Arabian J. Chem. 2016, 9, S946–S954. DOI: 10.1016/j.arabjc.2011.10.013.
Devillers, J.,; Morlot, M.,; Pham-Delègue, M. H.,; Doré, J. C., Classification of Monofloral Honeys Based on Their Quality Control Data. Food Chem. 2004, 86, 305–312. DOI: 10.1016/j.foodchem.2003.09.029.
Pérez-Arquillué, C.,; Conchello, P.,; Ariño, A.,; Juan, T.,; Herrera, A., Physicochemical Attributes and Pollen Spectrum of Some Unifloral Spanish Honeys. Food Chem. 1995, 54, 167–172. DOI: 10.1016/0308-8146(95)00022-B.
Jain, S. A.,; de Jesus, F. T.,; Marchioro, G. M.,; de Araujo, E. D., Extraction of DNA from Honey and Its Amplification by PCR for Botanical Identification. Food Sci. Technol. 2013, 33, 753–756. DOI: 10.1590/S0101-20612013000400022.
Hawkins, J.,; de Vere, N.,; Griffith, A.,; Ford, C. R.,; Allainguillaume, J.,; Hegarty, M. J.,; Baillie, L.,; Adams-Groom, B., Using DNA to Identify the Floral Composition of Honey: A New Tool for Investigating Honey Bee Foraging Preferences. PLos One. 2015, 10. DOI: e0134735.
Escuredo, O.,; Dobre, I.,; Fernández-González, M.,; Seijo, M. C., Contribution of Botanical Origin and Sugar Composition of Honeys on the Crystallization Phenomenon. Food Chem. 2014, 149, 84–90. DOI: 10.1016/j.foodchem.2013.10.097.
de Sousa, J. M. B.,; de Souza, E. L.,; Marques, G.,; de Toledo Benassi, M.,; Gullon, B.,; Pintado, M. M.,; Magnani, M., Sugar Profile, Physicochemical and Sensory Aspects of Monofloral Honeys Produced by Different Stingless Bee Species in Brazilian Semi-arid Region. LWT - Food Sci. Technol. 2016, 65, 645–651. DOI: 10.1016/j.lwt.2015.08.058.
Dramićanin, A. M.,; Andrić, F. L.,; Poštić, D. Ž.,; Momirović, N. M.,; Milojković-Opsenica, D. M., Sugar Profiles as a Promising Tool in Tracing Differences between Potato Cultivation Systems, Botanical Origin and Climate Conditions. J. Food Comp. Anal. 2018, 72, 57–65. DOI: 10.1016/j.jfca.2018.06.005.
Sanz, M. L.,; Gonzalez, M.,; de Lorenzo, C.,; Sanz, J.,; Martı́nez-Castro, I., A Contribution to the Differentiation between Nectar Honey and Honeydew Honey. Food Chem. 2005, 91, 313–317. DOI: 10.1016/j.foodchem.2004.06.013.
Pereira Da Costa, M.,; Conte, A. C., Chromatographic Methods for Ther Determination of Carbohydrates and Organic Acids in Foods of Animal Origin. Compr. Rev. Food Sci. Food Saf. 2014, 14, 586–600. DOI: 10.1111/1541-4337.12148.
Ouchemoukh, S.,; Schweitzer, P.,; Bachir Bey, M.,; Djoudad-Kadji, H.,; Louaileche, H., HPLC Sugar Profiles of Algerian Honeys. Food Chem. 2010, 121, 561–568. DOI: 10.1016/j.foodchem.2009.12.047.
Da Costa Leite, J. M.,; Trugo, L. C.,; Costa, L. S. M.,; Quinteiro, L. M. C.,; Barth, O. M.,; Dutra, V. M. L.,; De Maria, C. A. B., Determination of Oligosaccharides in Brazilian Honeys of Different Botanical Origin. Food Chem. 2000, 70, 93–98. DOI: 10.1016/S0956-7135(99)00115-2.
Morales, V.,; Corzo, N.,; Sanz, M. L., HPAEC-PAD Oligosaccharide Analysis to Detect Adulterations of Honey with Sugar Syrups. Food Chem. 2008, 107, 922–928. DOI: 10.1016/j.foodchem.2007.08.050.
Ruiz-Matute, A. I.,; Brokl, M.,; Soria, A. C.,; Sanz, M. L.,; Martínez-Castro, I., Gas Chromatographic–Mass Spectrometric Characterisation of Tri- and Tetrasaccharides in Honey. Food Chem. 2010, 120, 637–642. DOI: 10.1016/j.foodchem.2009.10.050.
de la Fuente, E.,; Sanz, M. L.,; Martinez-Castro, I.,; Sanz, J.,; Ruiz-Matute, A. I., Volatile and Carbohydrate Composition of Rare Unifloral Honeys from Spain. Food Chem. 2007, 105, 84–93. DOI: 10.1016/j.foodchem.2007.03.039.
de la Fuente, E.,; Ruiz-Matute, A. I.,; Valencia-Barrera, R. M.,; Sanz, J.,; Martínez Castro, I., Carbohydrate Composition of Spanish Unifloral Honeys. Food Chem. 2011, 129, 1483–1489. DOI: 10.1016/j.foodchem.2011.05.121.
Kaškonienė, V.,; Venskutonis, P. R.,; Čeksterytė, V., Carbohydrate Composition and Electrical Conductivity of Different Origin Honeys from Lithuania. LWT - Food Sci. Technol. 2010, 43, 801–807. DOI: 10.1016/j.lwt.2010.01.007.
Escriche, I.,; Kadar, M.,; Juan-Borras, M.,; Domenech, E., Suitability of Antioxidant Capacity, Flavonoids and Phenolic Acids for Floral Authentication of Honey. Impact of Industrial Thermal Treatment. Food Chem. 2014, 142. 135–143. DOI: 10.1016/j.foodchem.2013.07.033.
Pascual-Maté, A.,; Osés, S. M.,; Fernández-Muiño, M. A.,; Sancho, M. T., Analysis of Polyphenols in Honey: Extraction, Separation and Quantification Procedures. Sep. Purific. Rev. 2017, 1–17. DOI: 10.1080/15422119.2017.1354025.
Escriche, I.,; Kadar, M.,; Juan-Borrás, M.,; Domenech, E., Using Flavonoids, Phenolic Compounds and Headspace Volatile Profile for Botanical Authentication of Lemon and Orange Honeys. Food Res. Int. 2011, 44, 1504–1513. DOI: 10.1016/j.foodres.2011.03.049.
Campone, L.,; Piccinelli, A. L.,; Pagano, I.,; Carabetta, S.,; Di Sanzo, R.,; Russo, M.,; Rastrelli, L., Determination of Phenolic Compounds in Honey Using Dispersive Liquid-liquid Microextraction. J. Chromatogr. A. 2014, 21, 9–15. DOI: 10.1016/j.chroma.2014.01.081.
Yao, L.,; Jiang, Y.,; Singanusong, R.,; D’Arcy, B.,; Datta, N.,; Caffin, N.,; Raymont, K., Flavonoids in Australian Melaleuca, Guioa, Lophostemon, Banksia and Helianthus Honeys and Their Potential for Floral Authentication. Food Res. Int. 2004, 37, 166–174. DOI: 10.1016/j.foodres.2003.11.004.
Tomas-Barberan, F. A.,; Martos, I.,; Ferreres, F.,; Radovic, B. S.,; Anklam, E., HPLC Flavonoid Profiles as Markers for the Botanical Origin of European Unifloral Honeys. J. Sci. Food Agric. 2001, 81, 485–496. DOI: 10.1002/jsfa.836.
Kenjerić, D.,; Mandić, M. L.,; Primorac, L.,; Čačić, F., Flavonoid Pattern of Sage (salvia Officinalis L.) Unifloral Honey. Food Chem. 2008, 110, 187–192. DOI: 10.1016/j.foodchem.2008.01.031.
Kenjerić, D.,; Mandić, M. L.,; Primorac, L.,; Bubalo, D.,; Perl, A., Flavonoid Profile of Robinia Honeys Produced in Croatia. Food Chem. 2007, 102, 683–690. DOI: 10.1016/j.foodchem.2006.05.055.
Mărghitaş, L. A.,; Dezmirean, D. S.,; Pocol, C. B.,; Ilea, M.,; Bobiş, O.,; Gergen, I., The Development of a Biochemical Profile of Acacia Honey by Identifying Biochemical Determinants of Its Quality. Not. Bot. Horti Agrobot. 2010, 38, 84–90. DOI: 10.15835/nbha3824780.
Michalkiewicz, A.,; Biesaga, M.,; Pyrzynska, K., Solid-phase Extraction Procedure for Determination of Phenolic Acids and Some Flavonols in Honey. J. Chromatogr. A. 2008, 1187, 18–24. DOI: 10.1016/j.chroma.2008.02.001.
Zhou, X. J.,; Chen, J.,; Shi, Y. P., Rapid and Sensitive Determination of Polyphenols Composition of Unifloral Honey Samples with Their Antioxidant Capacities. Coagent Chem. 2015, 1. DOI: 10.1080/23312009.2015.1100527.
Shen, S.,; Wang, J. J.,; Zhuo, Q.,; Chen, X.,; Liu, T.,; Zhang, S. Q., Quantitative and Discriminative Evaluation of Contents of Phenolic and Flavonoid and Antioxidant Competence for Chinese Hones from Different Botanical Origins. Molecules. 2018, 23, 1110. DOI: 10.3390/molecules23051110.
Bonvehi, J. S.,; Coll, F. V., Flavour Index and Aroma Profiles of Fresh and Processed Honeys. J. Sci. Food Agric. 2003, 83, 275–282. DOI: 10.1002/jsfa.v83:4.
Jerkovic, I.,; Marijanovic, Z.,; Kezic, J.,; Gugic, M., Headspace, Volatile and Semi-Volatile Organic Compounds Diversity and Radical Scavenging Activity of Ultrasonic Solvent Extracts from Amorpha Fruticosa Honey Samples. Molecules. 2009, 14, 2717–2728. DOI: 10.3390/molecules14082717.
Alissandrakis, E.,; Tarantilis, P. A.,; Pappas, C.,; Harizanis, P. C.,; Polissiou, M., Ultrasound-assisted Extraction Gas Chromatography–Mass Spectrometry Analysis of Volatile Compounds in Unifloral Thyme Honey from Greece. Eur. Food Res. Technol. 2009, 229, 365–373. DOI: 10.1007/s00217-009-1046-8.
Alissandrakis, E.,; Tarantilis, P. A.,; Pappas, C.,; Harizanis, P. C.,; Polissiou, M., Investigation of Organic Extractives from Unifloral Chestnut (castanea Sativa L.) And Eucalyptus (eucalyptus Globulus LabilL.) Honeys and Flowers to Identification of Botanical Marker Compounds. LWT-Food Sci. Technol. 2010, 44, 1042–1051. DOI: 10.1016/j.lwt.2010.10.002.
Radovic, B. S.,; Careri, M.,; Mangia, A.,; Musci, M.,; Gerboles, M.,; Anklam, E., Contribution of Dynamic Headspace GC–MS Analysis of Aroma Compounds to Authenticity Testing of Honey. Food Chem. 2001, 72, 511–520. DOI: 10.1016/S0308-8146(00)00263-6.
Bianchi, F.,; Careri, M.,; Musci, M., Volatile Norisoprenoids as Markers of Botanical Origin of Sardinian Strawberry-tree (arbutus Unedo L.) Honey: Characterisation of Aroma Compounds by Dynamic Headspace Extraction and Gas Chromatography–Mass Spectrometry. Food Chem. 2005, 89, 527–532. doi: 10.1016/j.foodchem.2004.03.009.
Soria, A. C.,; Martínez-Castro, I.,; Sanz, J., Some Aspects of Dynamic Headspace Analysis of Volatile Components in Honey. Food Res. Int. 2008, 41, 838–848. DOI: 10.1016/j.foodres.2008.07.010.
Bianchi, F.,; Mangia, A.,; Mattarozzi, M.,; Musci, M., Characterization of the Volatile Profile of Thistle Honey Using Headspace Solid-phase Microextraction and Gas Chromatography–Mass Spectrometry. Food Chem. 2011, 129, 1030–1036. DOI: 10.1016/j.foodchem.2011.05.070.
Cajka, T.,; Hajslova, J.,; Pudil, F.,; Riddellova, K., Traceability of Honey Origin Based on Volatiles Pattern Processing by Artificial Neural Networks. J. Chromatogr. A. 2009, 1216, 1458–1462. DOI: 10.1016/j.chroma.2008.12.066.
Plutowska, B.,; Chmiel, T.,; Dymerski, T.,; Wardencki, W., A Headspace Solid-phase Microextraction Method Development and Its Application in the Determination of Volatiles in Honeys by Gas Chromatography. Food Chem. 2011, 126, 1288–1298. DOI: 10.1016/j.foodchem.2010.11.079.
Alissandrakis, E.,; Tarantilis, P. A.,; Harizanis, P. C.,; Polissiou, M., Aroma Investigation of Unifloral Greek Citrus Honey Using Solid-phase Microextraction Coupled to Gas Chromatographic–Mass Spectrometric Analysis. Food Chem. 2007, 100, 396–404. DOI: 10.1016/j.foodchem.2005.09.015.
Čajka, T.,; Hajšlová, J.,; Cochran, J.,; Holadová, K.,; Klimánková, E., Solid Phase Microextraction-comprehensive Two-dimensional Gas Chromatography-time-Of-flight Mass Spectrometry for the Analysis of Honey Volatiles. J. Sep. Sci. 2007, 30, 534–546. DOI: 10.1002/jssc.200600413.
Stanimirova, I.,; Üstün, B.,; Cajka, T.,; Riddelova, K.,; Hajslova, J.,; Buydens, L. M. C.,; Walczak, B., Tracing the Geographical Origin of Honeys Based on Volatile Compounds Profiles Assessment Using Pattern Recognition Techniques. Food Chem. 2010, 118, 171–176. DOI: 10.1016/j.foodchem.2009.04.079.
Ampuero, S.,; Bodganov, S.,; Bosset, J. O., Classification of Unifloral Honeys with an MS-based Electronic Nose Using Different Sampling Modes SHS SPME and INDEX. Eur. Food Res. Tech. 2004, 218, 194–207.
Hennessy, S.,; Downey, G.,; O’Donnell, C. P., Attempted Confirmation of the Provenance of Corsican PDO Honey Using FT-IR Spectroscopy and Multivariate Data Analysis. J. Agric. Food Chem. 2010, 58, 9401–9406. DOI: 10.1021/jf101500n.
Woodcock, T.,; Downey, G.,; O’Donnell, C. P., Near Infrared Spectral Fingerprinting for Confirmation of Claimed PDO Provenance of Honey. Food Chem. 2009, 114, 742–746. DOI: 10.1016/j.foodchem.2008.10.034.
Olawode, E. O.,; Tandlich, R.,; Cambray, G., 1H-NMR Profiling and Chemometric Analysis of Selected Honeys from South Africa, Zambia and Slovakia. Molecules. 2018, 23, 578. DOI: 10.3390/molecules23030578.
Jamróz, M. K.,; Paradowska, K.,; Zawada, K.,; Makarova, K.,; Kaźmierski, S.,; Wawer, I., 1H and 13C NMR-based Sugar Profiling with Chemometric Analysis and Antioxidant Activity of Herbhoneys and Honeys. J Sci Food Agric. 2014, 94, 246–255. DOI: 10.1002/jsfa.6241.
Spiteri, M.,; Jamin, E.,; Thomas, F.,; Rebours, A.,; Lees, M.,; Rogers, K. M.,; Rutledge, D. N., Fast and Global Authenticity Screening of Honey Using 1H-NMR Profiling. Food Chem. 2015, 189, 60–66. DOI: 10.1016/j.foodchem.2014.11.099.
Ruoff, K.,; Luginbuhl, W.,; Bogdanov, S.,; Bosset, J. O.,; Estermann, B.,; Ziolko, T.,; Amado, R., Authentication of the Botanical Origin of Honey by Near-infrared Spectroscopy. J. Agric. Food Chem. 2006, 54, 6867–6872. DOI: 10.1021/jf060770f.
Abbas, O.,; Dardenne, P.,; Baeten, V., (near-infrared, Mid-Infrared, and Raman Spectroscopy. In Chemical Analysis of Food: Techniques and Applications; Pico, Y., Ed.; Academic Press: Boston, 2012; pp 59–89.
Ruoff, K.,; Luginbuhl, W.,; Kunzli, R.,; Iglesias, M. T.,; Bogdanov, S.,; Bosset, J. O.,; Ohe, K. V. D.,; Ohe, W. V. D.,; Amado, R., Authentication of the Botanical and Geographical Origin of Honey by Mid-infrared Spectroscopy. J. Agric. Food Chem. 2006, 54, 6873–6880. DOI: 10.1021/jf060838r.
Svečnjak, L.,; Biliškov, N.,; Bubalo, D.,; Barišić, D., Application of Infrared Spectroscopy in Honey Analysis. Agric. Consp. Scientif. 2011, 76, 191–195.
Bertelli, D.,; Plessi, M.,; Sabatini, A. G.,; Lolli, M.,; Grillenzoni, F., Classification of Italian Honeys by Mid-infrared Diffuse Reflectance Spectroscopy (DRIFTS). Food Chem. 2007, 101, 1565–1570. DOI: 10.1016/j.foodchem.2006.04.010.
Oliveri, P.,; Di Egidio, V.,; Woodcock, T.,; Downey, G., Application of Class-modelling Techniques to near Infrared Data for Food Authentication Purposes. Food Chem. 2011, 125, 1450–1456. DOI: 10.1016/j.foodchem.2010.10.047.
Chen, L.,; Wang, J.,; Ye, Z.,; Zhao, J.,; Xue, X.,; Heyden, Y. V.,; Sun, Q., Classification of Chinese Honeys according to Their Floral Origin by near Infrared Spectroscopy. Food Chem. 2012, 135, 338–342. DOI: 10.1016/j.foodchem.2012.02.156.