[en] With the help of a new highly sensitive method allowing the quantification of free penicillin-binding proteins (PBPs) and of an integrated mathematical model, the progressive saturation of PBP1 by various beta-lactam antibiotics in growing cells of Bacillus licheniformis was studied. Although the results confirmed PBP1 as a major lethal target for these compounds, they also underlined several weaknesses in our present understanding of this phenomenon. In growing cells, but not in resting cells, the penicillin target(s) appeared to be somewhat protected from the action of the inactivators. In vitro experiments indicated that amino acids, peptides and depsipeptides mimicking the peptide moiety of the nascent peptidoglycan significantly interfered with the acylation of PBP1 by the antibiotics. In addition, the level of PBP1 saturation at antibiotic concentrations corresponding to the minimum inhibitory concentrations was not constant, suggesting that additional, presently undiscovered, factors might be necessary to account for the experimental observations.
Disciplines :
Chemical engineering
Author, co-author :
Lepage, Sylvie ; Université de Liège - ULiège > Département des sciences cliniques > Département des sciences cliniques
Lakaye, Bernard ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biochimie et physiologie humaine et pathologique
Galleni, Moreno ; Université de Liège - ULiège > Département des sciences de la vie > Macromolécules biologiques
Thamm, Iris ; Université de Liège - ULiège > Département des sciences de la vie > Département des sciences de la vie
Crine, Michel ; Université de Liège - ULiège > Département de chimie appliquée > Génie chimique - Opérations physiques unitaires
Groslambert, Sylvie ; Université de Liège - ULiège > Département de Chimie appliquée > Génie chimique
Frère, Jean-Marie ; Université de Liège - ULiège > Département des sciences de la vie > Département des sciences de la vie
Language :
English
Title :
Saturation of Penicillin-Binding Protein 1 by Beta-Lactam Antibiotics in Growing Cells of Bacillus Licheniformis
Adam M., Damblon C., Jamin M., Zorzi W., Dusart V., Galleni M., El Kharroubi A., Piras G., Spratt B.G., Keck W., Coyette J., Ghuysen J.M., Nguyen‐Distèche M., Frère J.M. (1991) Acyltransferase activities of the high‐molecular‐mass essential penicillin‐binding proteins. Bio-chem J 279:601-604.
Adam M., Damblon C., Plaitin B., Christiaens L., Frère J.M. (1990) Chromogenic depsipeptide substrates for β‐lactamases and penicillin‐sensitive Do‐peptidases. Biochem J 270:525-529.
Blumberg P.M., Strominger J.L. (1971) Inactivation of d‐alanine carboxypeptidase by penicillins and cephalo sporins is not lethal in Bacillus subtilis. Proc Natl Acad Sci USA 68:2614-2817.
Chase H.A., Shepherd S.T., Reynolds P.E. (1977) Studies on the penicillin‐binding components of Bacillus megaterium. FEBS Lett 76:199-203.
Chase H.A., Reynolds P.E., Ward J.B. (1978) Purification and characterization of the penicillin‐binding‐protein that is the lethal target of penicillin in Bacillus megaterium and Bacillus licheniformis. Eur J Biochem 88:275-285.
Courvalin P., Goldstein F., Philippon A., Sirot J., In L'antibiogramme (mpc‐videow ed); 1985, 191-198.
Curtis N.A.C., Orr D., Ross G.W., Boulton M.G. (1979) Affinities of penicillins and cephalosporins for the penicillin‐binding proteins of Escherichia coli K12 and their antibacterial activity. Antimicrob Agents Chemother 16:533-539.
Dubnau D.A., Pollock M.R. (1965) The genetics of Bacillus licheniformis penicillinase a preliminary analysis from studies on mutation inter‐strain and infra‐strain transformations. J Gen Microbiol 41:7-21.
Frère J.M. (1989) Quantitative relationship between sensitivity to β‐lactam antibiotics and β‐lactamase production in Gram negative bacteria. I, Steady‐state treatment. Biochemical Pharmacology 38:1415-1426.
Frère J.M., Joris B. (1985) Penicillin‐sensitive enzymes in peptidoglycan biosynthesis. CRC Crit Rev Microbiol 11:299-396.
Frère J.M., Ghuysen J.M., Degelaen J., Loffet A., Perkins H.R. (1975) Fragmentation of benzylpenicillin after interaction with the exocellular dd‐carboxypeptidase‐trans‐peptidase of Streptomyces R61 and R39. Nature 258:168-170.
Frère J.M., Joris B., Crine M., Martin H.H. (1989) Quantitative relationship between sensitivity to β‐lactam antibiotics and β‐lactamase production in Gram negative bacteria. II. Non‐steady‐state treatment and progress curves. Biochemical Pharmacology 38:1427-1433.
Gale E.F., Cundliffe E., Reynolds P.E., Richmond M.H., Waring M.J. (1981) Inhibitors of bacterial and fungal cell wall synthesis. The Molecular Basis of Antibiotic Action , 2nd edn., London:, John Wiley & Sons; 49-174.
Galleni M., Lakaye B., Lepage S., Jamin M., Thamm Y., Joris B., Frère J.M. (1993) A new, highly sensitive method for the detection and quantification of penicillin‐binding proteins. Biochem J 291:19-21.
Jamin M., Adam M., Damblon C., Christiaens L., Frère J.M. (1991) Accumulation of acyl‐enzyme in DD‐peptidase‐catalysed reactions with analogues of peptide substrates. Biochem J 280:499-506.
Jamin M., Wilkin J.M., Frère J.M. (1993) A new kinetic mechanism for the concomitant hydrolysis and transfer reactions catalysed by bacterial DD‐peptidases. Biochemistry 32:7278-7285.
Johnson K., Duez C., Frère J.M., Ghuysen J.M. Meth Enzymol 1975, 43:687-698.
Lakaye B., Damblon C., Jamin M., Galleni M., Lepage S., Joris B., Marchand‐Brijnaert J., Frydrych C., Frère J.M. (1994) Synthesis purification and kinetic properties of fluorescein labelled penicillins. Biochem J 300:141-145.
Lepage S., Galleni M., Lakaye B., Thamm I., Frère J.M., Kinetic properties of the Bacillus licheniformis penicillin‐binding proteins. Biochem J. in press.; 1995.
Nikaïdo H., Normark S. (1987) Sensitivity of Escherichia coli to various β‐lactams is determined by the interplay of outer membrane permeability and degradation by peri‐plasmic β‐lactamase: a quantitative predictive treatment. Mol Microbiol 1:29-36.
Pratt R.F., Govardhan C.P. (1984) βlactamase‐catalysed hydrolysis of acyclic depsipeptides and acyl transfer to specific amino acid acceptors. Proc Natl Acad Sci USA 81:1302-1306.
Reynolds P.E. (1983) Penicillin‐binding proteins and peptidoglycan biosynthesis in Bacillus megaterium. The Target of Penicillin , Hakenbeck, R., Höltje J.‐V., Labischinski, H., (eds). Berlin:, Walter de Gruyters and Co.; 517-522.
Reynolds P.E., Barnett H.J. (1974) Transpeptidases and dd‐carboxypeptidases in bacilli. Ann NY Acad Sci 235:269-282.
Reynolds P.E., Shepherd S.T., Chase H.A. (1978) Identification of the binding protein which may be the target of penicillin action in Bacillus megaterium. Nature 271:568-570.
Rodriguez‐Tébar A., Rojo F., Vasquez D. (1982) Interaction of βlactam antibiotics with penicillin‐binding proteins from Bacillus megaterium. European Journal of Biochemistry 126:161-166.
Sherrat D.J., Collins J.F. (1973) Analysis by transformation of the penicillinase system in Bacillus licheniformis. Journal of General Microbiology 76:217-230.
Spratt B.G. (1975) Distinct penicillin binding proteins involved in the division, elongation and shape of Escherichia coli K‐12. Proc Natl Acad Sci USA 72:2999-3003.
Spratt B.G. (1977) Properties of tie penicillin binding proteins of Escherichia coli K‐12. Eur J Biochem 72:341-352.
Spratt B.G. (1983) Penicillin binding proteins and the future of βlactam antibiotics. J Gen Microbiol 129:1247-1260.
Spratt B.G., Pardee A.B. (1975) Penicillin‐binding proteins and cell shape in Escherichia coli. Nature 254:516-517.
Tuomanen E. (1986) Newly made enzyme determine ongoing cell wall synthesis and the antibacterial effects of cell wall synthesis inhibitors. J Bacteriol 67:535-543.
Waley S.G. (1987) The kinetics of uptake and breakdown: antibiotic resistance. Biochemical Society Transactions 15:235-236.
Williamson R., Tomasz A. (1985) Inhibition of cell wall synthesis and acylation of the penicillin binding proteins during prolonged exposure of growing Steptococcus pneu‐moniae to benzylpenicillin. Eur J Biochem 151:475-483.
Zhu Y., Englebert S., Joris B., Ghuysen J.M., Kobayashi T., Lampen J.O. (1992) Structure, function and fate of the BlaR signal transducer involved in induction of βlactamase in Bacillus licheniformis. J Bacteriol 174:6171-6178.