[en] Zoonotic transmission of Clostridium difficile has been largely hypothesised to occur after direct or indirect contact
with contaminated animal faeces. Recent studies have reported the presence of the bacterium in the natural
environment, including in soils and rivers. If C. difficile spores are scattered in the environment, they can easily
enter the respiratory tract of dogs, and therefore, dog nasal discharge could be a direct route of transmission not
previously investigated. This study reports for the first time the presence of C. difficile in the respiratory tracts of
dogs. The bacterium was isolated from 6 (17.1%) out of 35 nasal samples, with a total of 4 positive dogs (19%).
C. difficile was recovered from both proximal and distal nasal cavities. All isolates were toxigenic and belonged to
PCR-ribotype 014, which is one of the most predominant types in animals and in community-acquired C. difficile
infections in recent years. The findings of this study demonstrate that the nasal cavity of dogs is contaminated
with toxigenic C. difficile, and therefore, its secretions could be considered as a new route by which bacteria are
spread and transmitted.
Research Center/Unit :
FARAH - Fundamental and Applied Research for Animals and Health - ULiège
Disciplines :
Microbiology
Author, co-author :
Rodriguez, Cristina; Université de Liège - ULiège > Département des Sciences des Denrées alimentaires > Microbiologie
Taminiau, Bernard ; Université de Liège - ULiège > Département de sciences des denrées alimentaires (DDA) > Microbiologie des denrées alimentaires
Bouchafa, L.; Université de Liège - ULiège > Département des Sciences des Denrées alimentaires > Microbiologie
Romijn, Sylvain ; Université de Liège - ULiège > Dép. clinique des animaux de compagnie et des équidés (DCA) > Pathologie médicale des petits animaux
Van Broeck, J.; Université Catholique de Louvain - UCL > National Reference Center Clostridium difficile
Delmée, Michel; Université Catholique de Louvain - UCL > National Reference Center Clostridium difficile
Clercx, Cécile ; Université de Liège - ULiège > Dép. clinique des animaux de compagnie et des équidés (DCA) > Pathologie médicale des petits animaux
Daube, Georges ; Université de Liège - ULiège > Département de sciences des denrées alimentaires (DDA) > Microbiologie des denrées alimentaires
Language :
English
Title :
Clostridium difficile beyond stools: dog nasal discharge as a possible new vector of bacterial transmission
Baverud, V., Clostridium difficile infections in animals with special reference to the horse. A review. Vet. Quartely 24 (2002), 203–219.
Best, E.L., Freeman, J., Wilcox, M.H., Models for the study of Clostridium difficile infection. Gut Microb. 3 (2012), 145–167.
Bidet, P., Barbut, F., Lalande, V., Burghoffer, B., Petit, J.C., Development of new PCR-ribotyping method based on ribosomal RNA gene sequencing. FEMS (Fed. Eur. Microbiol. Soc.)Microbiol. Lett. 175 (1999), 261–266.
Cheknis, A., Johnson, S., Chesnel, L., Petrella, L., Sambol, S., Dale, S.E., Nary, J., Sears, P., Citron, D.M., Goldstein, E.J.C., et al. Molecular epidemiology of Clostridioides (clostridium)difficile strains recovered from clinical trials in the US, Canada and Europe from 2006-2009 to 2012-2015. Anaerobe, 26, 2018.
Claro, T., Daniels, S., Humphreys, H., Detecting Clostridium difficile spores from inanimate surfaces of the hospital environment: which method is the best?. J. Clin. Microbiol. 52 (2014), 3426–3428.
Delmée, M., Van Broeck, J., Simon, A., Janssen, M., Avesani, V., Laboratory diagnosis of Clostridium difficile-associated diarrhoea: a plea for culture. J. Med. Microbiol. 54 (2005), 187–191.
Delmée, M., Vandercam, B., Avesani, V., Michaux, J.L., Epidemiology and prevention of Clostridium difficile infections in a leukaemia unit. Eur. J. Clin. Microbiol. 6 (1987), 623–627.
Dharmasena, M., Jiang, X., Isolation of toxigenic Clostridium difficile from animal manure and compost being used as biological soil amendments. Appl. Environ. Microbiol., 1, 2018, 84.
Ericsson, A.C., Personett, A.R., Grobman, M.E., Rindt, H., Reinero, C.R., Composition and predicted metabolic capacity of upper and lower airway microbiota of healthy dogs in realtion to the fecal microbioma. Plos One, 11, 2016, e0154646.
Hall, I.C., O'Toole, E., Intestinal flora in new born infants with a description of a new pathogenic anaerobe, Bacillus difficilis. Am. J. Dis. Child. 49 (1935), 390–402.
Janezic, S., Mlakar, S., Rupnik, M., Dissemination of Clostridium difficile spores between environment and households: dog paws and shoes. Zoonoses Public Health, 23, 2018.
Jenkins, E.K., DeChant, M.T., Perry, E.B., When the nose doesn't know: canine olfactory function associated with health, management and potential links to microbiota. Front. Vet. Sci., 5, 2018, 56.
Jump, R.L.P., Pultz, M.J., Donskey, C.J., Vegetative Clostridium difficile survives in room air on moist surfaces and in gastric contents with reduced acidity: a potential mechanism to explain the association between Proton Pump Inhibitors and C. difficile associated diarrhea. Antimicrob. Agents Chemother. 51 (2007), 2883–2887.
Lawson, P.A., Citron, D.M., Tyrrell, K.L., Finegold, S.M., Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O'Toole 1935)prévot 1938. Anaerobe 40 (2016), 95–99.
Lefebvre, S.L., Weese, J.S., Contamination of pet therapy dogs with MRSA and Clostridium difficile. J. Hosp. Infect. 72 (2009), 268–269.
Lübbert, C., Lippmann, N., von Braun, A., New guidelines and data to Clostridium difficile – What's the new?. DMW (Dtsch. Med. Wochenschr.)143 (2018), 787–792.
Lübbert, C., John, E., von Muller, L., Clostridium difficile infection: guideline-based diagnosis and treatment. Dtsch. Arzteblatt Int. 111 (2014), 723–773.
Orden, C., Neila, C., Blanco, J.L., Alvarez-Perez, S., Harmanus, C., Kuijper, E.J., Garcia, M.E., Recreational sandboxes for children and dogs can be a source of epidemic ribotypes of Clostridium difficile. Zoonoses Public Health 65 (2018), 88–95.
Rabold, D., Espelage, W., Abu Sin, M., Eckmanns, T., Schneeberg, A., Neubauer, H., Möbius, N., Hille, K., Wieler, L.H., Seyboldt, C., et al. The zoonotic potential of Clostridium difficile from small companion animals and their owners. PLoS One, 13, 2018, e0193411.
Rodriguez Diaz, C., Seyboldt, C., Rupnik, M., Non-human C. difficile reservoirs and sources: animals, food, environment. Adv. Exp. Med. Biol. 1050 (2018), 227–243.
Rodriguez, C., Taminiau, B., Van Broeck, J., Delmée, M., Daube, G., Clostridium difficile in food and animals: a comprehensive review. Adv. Exp. Med. Biol. 932 (2016), 65–92.
Rodriguez, C., Avesani, V., Van Broeck, J., Taminiau, M., Delmée, M., Daube, G., Presence of Clostridium difficile in pigs and cattle intestinal contents and carcass contamination at the slaughter in Belgium. Int. J. Food Microbiol. 166 (2013), 256–262.
Rupnik, M., Clostridium difficile: (re)emergence of zoonotic potential. Clin. Infect. Dis. 1050 (2010), 227–243.
Slifierz, M.J., Friendship, R.M., Weese, J.S., Longitudinal study of the early-life fecal and nasal microbiotas of the domestic pig. BMC Microbiol., 15, 2015, 184.
Tress, B., Dorn, E.S., Suchodolski, J.S., Nisar, T., Ravindran, P., Weber, K., Hartmann, K., Schulz, B.S., Bacterial microbiome of the nose of healthy dogs and dogs with nasal disease. PLoS One, 12(5), 2017, e0176736.
Warriner, K., Xu, C., Habash, M., Sultan, S., Weese, S.J., Dissemination of Clostridium difficile in foods and the environment: significant sources of C. difficile community-acquired infection?. J. Appl. Microbiol. 122 (2017), 542–553.
Weese, J.S., Avery, B.P., Rousseau, J., Reid-Smith, R.J., Detection and enumeration of Clostridium difficile spores in retail beef and pork. Appl. Environ. Microbiol. 75 (2009), 5009–5011.
Zidaric, V., Beigot, S., Lapagne, S., Rupnik, M., The occurrence and high diversity of Clostridium difficile genotypes in rivers. Anaerobe 16 (2010), 371–378.
Zidaric, V., Rupnik, M., Sporulation and antimicrobial susuceptibility in endemic and rare Clostridium difficile PCR-ribotypes. Anaerobe 39 (2016), 183–188.