Abstract :
[en] In recent years, comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC × GC–TOFMS) has been reported as a suitable tool for the determination of volatile organic compounds (VOCs) emitted during the process of cadaveric decomposition. The main aim of the present study was to investigate temporal changes in VOC patterns during the decomposition process of various human tissues. The focus of previous research was mainly on the analysis of VOCs produced by whole cadavers. However, this study aimed to identify whether the VOCs produced during decomposition differ between specific organs, and further, to determine the extent of the variation between cadavers. The sampling process developed for this project allowed inter- and intra-cadaveric comparison. The headspace of heart, lung, liver, kidney and blood was monitored during the decomposition process. Tissue samples from five different cadavers were sampled regularly by dynamic pumping onto sorbent tubes that were further thermally desorbed onto a GC × GC–TOFMS system. A large amount of data (n = 774) was obtained, leading to challenges in the integration, interpretation and representation of the results. Eventually, multivariate statistical methods, such as principal components analysis (PCA) and hierarchical cluster analysis (HCA) were applied to the dataset to evaluate trends and differences in subgroups. It was demonstrated that there were subtle differences between the sets of compounds produced from each organ due to the different functions they carry out within the body. However, VOC profiles were more similar among organs from the same cadaver than when comparing samples from different cadavers. Various reasons may cause the differences between the analyzed cadavers, ranging from the individual diet and lifestyle to the time since death. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.
Scopus citations®
without self-citations
17