[en] We solved the crystal structure of a secreted protein, EXLX1, encoded by the yoaJ gene of Bacillus subtilis. Its structure is remarkably similar to that of plant beta-expansins (group 1 grass pollen allergens), consisting of 2 tightly packed domains (D1, D2) with a potential polysaccharide-binding surface spanning the 2 domains. Domain D1 has a double-psi beta-barrel fold with partial conservation of the catalytic site found in family 45 glycosyl hydrolases and in the MltA family of lytic transglycosylases. Domain D2 has an Ig-like fold similar to group 2/3 grass pollen allergens, with structural features similar to a type A carbohydrate-binding domain. EXLX1 bound to plant cell walls, cellulose, and peptidoglycan, but it lacked lytic activity against a variety of plant cell wall polysaccharides and peptidoglycan. EXLX1 promoted plant cell wall extension similar to, but 10 times weaker than, plant beta-expansins, which synergistically enhanced EXLX1 activity. Deletion of the gene encoding EXLX1 did not affect growth or peptidoglycan composition of B. subtilis in liquid medium, but slowed lysis upon osmotic shock and greatly reduced the ability of the bacterium to colonize maize roots. The presence of EXLX1 homologs in a small but diverse set of plant pathogens further supports a role in plant-bacterial interactions. Because plant expansins have proved difficult to express in active form in heterologous systems, the discovery of a bacterial homolog opens the door for detailed structural studies of expansin function.
Research Center/Unit :
CIP - Centre d'Ingénierie des Protéines - ULiège
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Kerff, Frédéric ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Amoroso, Ana Maria ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Herman, Raphaël ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Sauvage, Eric ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Petrella, Stephanie
Filée, Patrice ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Charlier, Paulette ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Joris, Bernard ; Université de Liège - ULiège > Département des sciences de la vie > Physiologie et génétique bactériennes - Centre d'ingénierie des protéines
Tabuchi, Akira
Nikolaidis, Nikolas
Cosgrove, Daniel J
Language :
English
Title :
Crystal structure and activity of Bacillus subtilis YoaJ (EXLX1), a bacterial expansin that promotes root colonization.
Publication date :
2008
Journal title :
Proceedings of the National Academy of Sciences of the United States of America
ISSN :
0027-8424
eISSN :
1091-6490
Publisher :
National Academy of Sciences, Washington, United States - District of Columbia
Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850-861.
Sampedro J, Cosgrove DJ (2005) The expansin superfamily. Genome Biol 6:242.
Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407:321-326.
Yennawar NH, Li LC, Dudzinski DM, Tabuchi A, Cosgrove DJ (2006) Crystal structure and activities of EXPB1 (Zea m 1), a β-expansin and group-1 pollen allergen from maize. Proc Natl Acad Sci USA 103:14664-14671.
Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: Consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1-30.
Li Y, et al. (2002) Plant expansins are a complex multigene family with an ancient evolutionary origin. Plant Physiol 128:854-864.
Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307-319.
Kende H, et al. (2004) Nomenclature for members of the expansin superfamily of genes and proteins. Plant Mol Biol 55:311-314.
Castillo RM, et al. (1999) A six-stranded double-psi β-barrel is shared by several protein superfamilies. Structure 7:227-236.
Madej T, Gibrat JF, Bryant SH (1995) Threading a database of protein cores. Proteins 23:356-369.
Li LC, Cosgrove DJ (2001) Grass group I pollen allergens (β-expansins) lack proteinase activity and do not cause wall loosening via proteolysis. Eur J Biochem 268:4217-4226.
Krissinel E, Henrick K (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in 3 dimensions. Acta Crystallogr D 60:2256-2268.
Emsley P, Cowtan K (2004) Coot: Model-building tools for molecular graphics. Acta Crystallogr D 60:2126-2132.
Ludvigsen S, Poulsen FM (1992) Three-dimensional structure in solution of barwin, a protein from barley seed. Biochemistry 31:8783-8789.
Davies GJ, Tolley SP, Henrissat B, Hjort C, Schulein M (1995) Structures of oligosaccharide-bound forms of the endoglucanase V from Humicola insolens at 1.9 A resolution. Biochemistry 34:16210-16220.
Eriksson J, et al. (2005) Model cellulose films exposed to H. insolens glucoside hydrolase family 45 endocellulase: The effect of the carbohydrate-binding module. J Colloid Interface Sci 285:94-99.
Hirvonen M, Papageorgiou AC (2003) Crystal structure of a family 45 endoglucanase from Melanocarpus albomyces: Mechanistic implications based on the free and cellobiose-bound forms. J Mol Biol 329:403-410.
Blackburn NT, Clarke AJ (2001) Identification of four families of peptidoglycan lytic transglycosylases. J Mol Evol 52:78-84.
van Straaten KE, Dijkstra BW, Vollmer W, Thunnissen AM (2005) Crystal structure of MltA from Escherichia coli reveals a unique lytic transglycosylase fold. J Mol Biol 352:1068-1080.
van Straaten KE, Barends TR, Dijkstra BW, Thunnissen AM (2007) Structure of Escherichia coli lytic transglycosylase MltA with bound chitohexaose: Implications for peptidoglycan binding and cleavage. J Biol Chem 282:21197-21205.
Cosgrove DJ, Bedinger P, Durachko DM (1997) Group I allergens of grass pollen as cell wall-loosening agents. Proc Natl Acad Sci USA 94:6559-6564.
Yuan S, Wu Y, Cosgrove DJ (2001) A fungal endoglucanase with plant cell wall extension activity. Plant Physiol 127:324-333.
Rose JK, Braam J, Fry SC, Nishitani K (2002) The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: Current perspectives and a new unifying nomenclature. Plant Cell Physiol 43:1421-1435.
Doyle RJ, Koch AL (1987) The functions of autolysins in the growth and division of Bacillus subtilis. Crit Rev Microbiol 15:169-222.
Jolliffe LK, Doyle RJ, Streips UN (1981) The energized membrane and cellular autolysis in Bacillus subtilis. Cell 25:753-763.
Cavaglieri L, Orlando J, Rodriguez MI, Chulze S, Etcheverry M (2005) Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root level. Res Microbiol 156:748-754.
Gartemann KH, et al. (2003) Clavibacter michiganensis subsp michiganensis: First steps in the understanding of virulence of a Gram-positive phytopathogenic bacterium. J Biotechnol 106:179-191.
Laine MJ, et al. (2000) The cellulase encoded by the native plasmid of Clavibacter michiganensis ssp sepedonicus plays a role in virulence and contains an expansin-like domain. Physiol Mol Plant Pathol 57:221-233.
Brotman Y, Briff E, Viterbo A, Chet I (2008) Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization. Plant Physiol 147:779-789.
Ochiai A, Itoh T, Kawamata A, Hashimoto W, Murata K (2007) Plant cell wall degradation by saprophytic Bacillus subtilis strains: Gene clusters responsible for rhamnogalacturonan depolymerization. Appl Environ Microbiol 73:3803-3813.
Nooren IM, Thornton JM (2003) Structural characterization and functional significance of transient protein-protein interactions. J Mol Biol 325:991-1018.
McQueen-Mason SJ, Cosgrove DJ (1995) Expansin mode of action on cell walls: Analysis of wall hydrolysis, stress relaxation, and binding. Plant Physiol 107:87-100.
Vagner V, Dervyn E, Ehrlich SD (1998) A vector for systematic gene inactivation in Bacillus subtilis. Microbiology 144:3097-3104.
McQueen-Mason S, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell wall expansion in plants. Plant Cell 4:1425-1433.
Li LC, Bedinger PA, Volk C, Jones AD, Cosgrove DJ (2003) Purification and characterization of four β-expansins (Zea m 1 isoforms) from maize pollen. Plant Physiol 132:2073-2085.
Yaryura PM, et al. (2008) Assessment of the role of chemotaxis and biofilm formation as requirements for colonization of roots and seeds of soybean plants by Bacillus amyloliquefaciens BNM339. Curr Microbiol 56:625-632.