GIGA CRC (Cyclotron Research Center) In vivo Imaging-Aging & Memory - ULiège
Disciplines :
Neurology
Author, co-author :
Van Egroo, Maxime ; Université de Liège - ULiège > CRC In vivo Imaging-Sleep and chronobiology
Narbutas, Justinas ; Université de Liège - ULiège > CRC In vivo Imaging-Aging & Memory
Chylinski, Daphné ; Université de Liège - ULiège > CRC In vivo Imaging-Sleep and chronobiology
Villar Gonzalez, Pamela ; Université de Liège - ULiège > Département des sciences cliniques > Neuroimagerie des troubles de la mémoire et revalid. cogn.
Maquet, Pierre ; Université de Liège - ULiège > Département des sciences cliniques > Neurologie
Salmon, Eric ; Université de Liège - ULiège > Département des sciences cliniques > Neuroimagerie des troubles de la mémoire et revalid. cogn.
Bastin, Christine ; Université de Liège - ULiège > Département des sciences cliniques > Neuroimagerie des troubles de la mémoire et revalid. cogn.
Collette, Fabienne ; Université de Liège - ULiège > Département de Psychologie > Neuropsychologie
Vandewalle, Gilles ; Université de Liège - ULiège > Département des sciences cliniques > Neurologie
Language :
English
Title :
Sleep-Wake Regulation and the Hallmarks of the Pathogenesis of Alzheimer's Disease
Publication date :
2019
Journal title :
Sleep
ISSN :
0161-8105
eISSN :
1550-9109
Publisher :
The American Academy of Sleep Medicine, United States - Illinois
Scheltens P, et al., Alzheimer's disease. Lancet. 2016;388(10043):505-517.
Cummings J, et al., Drug development in Alzheimer's disease: The path to 2025. Alzheimer's Res Ther. 2016;8(1):1-12.
Mangialasche F, et al., Alzheimer's disease: Clinical trials and drug development. Lancet Neurol. 2010;9(7):702-716.
Prince M, et al., World Alzheimer Report 2015: The global impact of dementia- A n analysis of prevalence, incidence, cost and trends. Alzheimer's Dis Int. 2015:84.
Zissimopoulos J, et al., The value of delaying Alzheimer's disease onset. Forum Heal Econ Policy. 2015;18(1):25-39.
Mather M, et al., The locus coeruleus: Essential for maintaining cognitive function and the aging brain. Trends Cogn Sci. 2016;20(3):214-226.
Norton S, et al., Potential for primary prevention of Alzheimer's disease: An analysis of population-based data. Lancet Neurol. 2014;13(8):788-794.
Lim AS, et al., Sleep fragmentation and the risk of incident Alzheimer's disease and cognitive decline in older persons. Sleep. 2013;36(7):1027-1032.
Hahn EA, et al., A change in sleep pattern may predict Alzheimer disease. Am J Geriatr Psychiatry. 2014;22(11):1262-1271.
Landry GJ, et al., Buying time: A rationale for examining the use of circadian rhythm and sleep interventions to delay progression of mild cognitive impairment to Alzheimer's disease. Front Aging Neurosci. 2014;6:325.
Benedict C, et al., Self-reported sleep disturbance is associated with Alzheimer's disease risk in men. Alzheimers Dement. 2015;11(9):1090-1097.
Musiek ES, et al., Mechanisms linking circadian clocks, sleep, and neurodegeneration. Science. 2016;354(6315):1004-1008.
Bubu OM, et al., Sleep, cognitive impairment and Alzheimer's disease: A systematic review and meta-analysis. Sleep. 2016;40(1):1-18.
Jack CR Jr, et al., Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol. 2010;9(1):119-128.
Jack CR Jr, et al., Tracking pathophysiological processes in Alzheimer's disease: An updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12(2):207-216.
Roe CM, et al., Amyloid imaging and CSF biomarkers in predicting cognitive impairment up to 7. 5 years later. Neurology. 2013;80(19):1784-1791.
Sperling RA, et al., Toward defining the preclinical stages of Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7(3):280-292.
Kim J, et al., The role of apolipoprotein E in Alzheimer's disease. Neuron. 2009;63(3):287-303.
Michaelson DM. APOE 4: The most prevalent yet understudied risk factor for Alzheimer's disease. Alzheimers Dement. 2014;10(6):861-868.
Poirier J, et al., Apolipoprotein E polymorphism and Alzheimer's disease. Lancet. 1993;342(8873):697-699.
Tanzi RE. The genetics of Alzheimer disease. Cold Spring Harb Perspect Med. 2012;2(10):a006296.
Zhu XC, et al., Rate of early onset Alzheimer's disease: A systematic review and meta-analysis. Ann Transl Med. 2015;3(3):38.
Masters CL, et al., Biochemistry of amyloid-protein and amyloid deposits in Alzheimer disease. Cold Spring Harb Perspect Med. 2012;2(6):a006262.
De Strooper B, et al., The secretases: Enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol. 2010;6(2):99-107.
Kim J, et al., Abeta40 inhibits amyloid deposition in vivo. J Neurosci. 2007;27(3):627-633.
Lambert MP, et al., Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA. 1998;95(11):6448-6453.
Murphy MP, et al., Alzheimer's disease and the amyloid-beta peptide. J Alzheimers Dis. 2010;19(1):311-323.
Sprecher KE, et al., Poor sleep is associated with CSF biomarkers of amyloid pathology in cognitively normal adults. Neurology. 2017;89(5):445-453.
Palmqvist S, et al., Cerebrospinal fluid analysis detects cerebral amyloid- A ccumulation earlier than positron emission tomography. Brain. 2016;139(4):1226-1236.
Thal DR, et al., Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology. 2002;58(12):1791-1800.
Hardy J, et al., The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics. Science. 2002;297(5580):353-356.
Hardy JA, et al., Alzheimer's disease: The amyloid cascade hypothesis. Science. 1992;256(5054):184-185.
Haass C, et al., Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer's amyloid beta-peptide. Nat Rev Mol Cell Biol. 2007;8(2):101-112.
Drachman DA. The amyloid hypothesis, time to move on: Amyloid is the downstream result, not cause, of Alzheimer's disease. Alzheimers Dement. 2014;10(3):372-380.
Karran E, et al., The amyloid cascade hypothesis for Alzheimer's disease: An appraisal for the development of therapeutics. Nat Rev Drug Discov. 2011;10(9):698-712.
Marchesi VT. Alzheimer's dementia begins as a disease of small blood vessels, damaged by oxidative-induced inflammation and dysregulated amyloid metabolism: Implications for early detection and therapy. FASEB J. 2011;25(1):5-13.
Simic G, et al., Does Alzheimer's disease begin in the brainstem Neuropathol Appl Neurobiol. 2009;35(6):532-554.
Musiek ES, et al., Three dimensions of the amyloid hypothesis: Time, space and 'wingmen'. Nat Neurosci. 2015;18(6):800-806.
Kang JE, et al., Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle. Science. 2009;326(5955):1005-1007.
Huang Y, et al., Effects of age and amyloid deposition on A dynamics in the human central nervous system. Arch Neurol. 2012;69(1):51-58.
Mendelsohn AR, et al., Sleep facilitates clearance of metabolites from the brain: Glymphatic function in aging and neurodegenerative diseases. Rejuvenation Res. 2013;16(6):518-523.
Xie L, et al., Sleep drives metabolite clearance from the adult brain. Science. 2013;342(6156):373-377.
Westerman MA, et al., The relationship between Abeta and memory in the Tg2576 mouse model of Alzheimer's disease. J Neurosci. 2002;22(5):1858-1867.
Hsiao K, et al., Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science. 1996;274(5284):99-102.
Chemelli RM, et al., Narcolepsy in orexin knockout mice: Molecular genetics of sleep regulation. Cell. 1999;98(4):437-451.
Mahler SV, et al., Motivational activation: A unifying hypothesis of orexin/hypocretin function. Nat Neurosci. 2014;17(10):1298-1303.
Roh JH, et al., Potential role of orexin and sleep modulation in the pathogenesis of Alzheimer's disease. J Exp Med. 2014;211(13):2487-2496.
Nedergaard M. Neuroscience. Garbage truck of the brain. Science. 2013;340(6140):1529-1530.
Nakada T, et al., Fluid dynamics inside the brain barrier: Current concept of interstitial flow, glymphatic flow, and cerebrospinal fluid circulation in the brain. Neuroscientist. 2018;6:1-12.
Rainey-Smith SR, et al., Genetic variation in Aquaporin-4 moderates the relationship between sleep and brain A-Amyloid burden. Transl Psychiatry. 2018;8(1).
Rasmussen MK, et al., The glymphatic pathway in neurological disorders. Lancet Neurol. 2018;17(11):1016-1024.
Ooms S, et al., Effect of 1 night of total sleep deprivation on cerebrospinal fluid-amyloid 42 in healthy middleaged men: A randomized clinical trial. JAMA Neurol. 2014;71(8):971-977.
Chen L, et al., Sleep deprivation accelerates the progression of Alzheimer's disease by influencing A-related metabolism. Neurosci Lett. 2017;650:146-152.
Shokri-Kojori E, et al.,-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc Natl Acad Sci USA. 2018;115(17):4483-4488.
Nir Y, et al., Regional slow waves and spindles in human sleep. Neuron. 2011;70(1):153-169.
Bero AW, et al., Neuronal activity regulates the regional vulnerability to amyloid-deposition. Nat Neurosci. 2011;14(6):750-756.
Cirrito JR, et al., Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo. Neuron. 2005;48(6):913-922.
Roh JH, et al., Disruption of the sleep-wake cycle and diurnal fluctuation of-amyloid in mice with Alzheimer's disease pathology. Sci Transl Med. 2012;4(150):150:ra122.
Varga AW, et al., Reduced slow-wave sleep is associated with high cerebrospinal fluid A42 levels in cognitively normal elderly. Sleep. 2016;39(11):2041-2048.
Ju YS, et al., Slow wave sleep disruption increases cerebrospinal fluid amyloid-levels. Brain. 2017;140(8):2104-2111.
Lucey BP, et al., Effect of sleep on overnight cerebrospinal fluid amyloid kinetics. Ann Neurol. 2018;83(1):197-204.
Mander BA, et al., Sleep and human aging. Neuron. 2017;94(1):19-36.
Carrier J, et al., Sleep slow wave changes during the middle years of life. Eur J Neurosci. 2011;33(4):758-766.
Braak H, et al., Stages of the pathologic process in Alzheimer disease: Age categories from 1 to 100 years. J Neuropathol Exp Neurol. 2011;70(11):960-969.
Dufort-Gervais J, et al., Bidirectional relationships between sleep and amyloid-beta in the hippocampus. Neurobiol Learn Mem. 2018; In Press.
Cedernaes J, et al., Candidate mechanisms underlying the association between sleep-wake disruptions and Alzheimer's disease. Sleep Med Rev. 2017;31:102-111.
Ju YE, et al., Sleep and Alzheimer disease pathology-a bidirectional relationship. Nat Rev Neurol. 2014;10(2):115-119.
Busche MA, et al., Rescue of long-range circuit dysfunction in Alzheimer's disease models. Nat Neurosci. 2015;18(11):1623-1630.
Dissel S, et al., Enhanced sleep reverses memory deficits and underlying pathology in Drosophila models of Alzheimer's disease. Neurobiol Sleep Circadian Rhythms. 2017;2:15-26.
Spira AP, et al., Self-reported sleep and-amyloid deposition in community-dwelling older adults. JAMA Neurol. 2013;70(12):1537-1543.
Sprecher KE, et al., Amyloid burden is associated with selfreported sleep in nondemented late middle-aged adults. Neurobiol Aging. 2015;36(9):2568-2576.
Branger P, et al., Relationships between sleep quality and brain volume, metabolism, and amyloid deposition in late adulthood. Neurobiol Aging. 2016;41:107-114.
Carvalho DZ, et al., Association of excessive daytime sleepiness with longitudinal-amyloid accumulation in elderly persons without dementia. JAMA Neurol. 2018;75(6):672-680.
Spira AP, et al., Excessive daytime sleepiness and napping in cognitively normal adults: Associations with subsequent amyloid deposition measured by PiB PET. Sleep. 2018;41(10):1-7.
Brown BM, et al., ; AIBL Research Group. The relationship between sleep quality and brain amyloid burden. Sleep. 2016;39(5):1063-1068.
Ju YE, et al., Sleep quality and preclinical Alzheimer disease. JAMA Neurol. 2013;70(5):587-593.
Mander BA, et al.,-amyloid disrupts human NREM slow waves and related hippocampus-dependent memory consolidation. Nat Neurosci. 2015;18(7):1051-1057.
Andrade AG, et al., The relationship between obstructive sleep apnea and Alzheimer's disease. J Alzheimers Dis. 2018;64(s1):S255-S270.
Elias A, et al., Risk of Alzheimer's disease in obstructive sleep apnea syndrome: Amyloid- A nd Tau imaging. J Alzheimers Dis. 2018;66(2):733-741.
Sharma RA, et al., Obstructive sleep apnea severity affects amyloid burden in cognitively normal elderly. A longitudinal study. Am J Respir Crit Care Med. 2018;197(7):933-943.
Ju YE, et al., Obstructive sleep apnea decreases central nervous system-derived proteins in the cerebrospinal fluid. Ann Neurol. 2016;80(1):154-159.
Musiek ES, et al., Circadian rest-activity pattern changes in aging and preclinical Alzheimer disease. JAMA Neurol. 2018;75(5):582-590.
Molano JRV, et al., The interaction of sleep and amyloid deposition on cognitive performance. J Sleep Res. 2017;26(3):288-292.
Yaffe K, et al., Connections between sleep and cognition in older adults. Lancet Neurol. 2014;13(10):1017-1028.
Bilgel M, et al., Effects of amyloid pathology and neurodegeneration on cognitive change in cognitively normal adults. Brain. 2018;141:2475-2485.
Mietelska-Porowska A, et al., Tau protein modifications and interactions: Their role in function and dysfunction. Int J Mol Sci. 2014;15(3):4671-4713.
Spillantini MG, et al., Tau pathology and neurodegeneration. Lancet Neurol. 2013;12(6):609-622.
Nelson PT, et al., Correlation of Alzheimer disease neuropathologic changes with cognitive status: A review of the literature. J Neuropathol Exp Neurol. 2012;71(5):362-381.
Gómez-Ramos A, et al., Extracellular tau is toxic to neuronal cells. FEBS Lett. 2006;580(20):4842-4850.
Spires-Jones TL, et al., Are tangles as toxic as they look J Mol Neurosci. 2011;45(3):438-444.
Fox LM, et al., Soluble tau species, not neurofibrillary aggregates, disrupt neural system integration in a tau transgenic model. J Neuropathol Exp Neurol. 2011;70(7):588-595.
Braak H, et al., Neuropathological stageing of Alzheimerrelated changes. Acta Neuropathol. 1991;82(4):239-259.
Braak H, et al., The pathological process underlying Alzheimer's disease in individuals under thirty. Acta Neuropathol. 2011;121(2):171-181.
Saper CB, et al., Hypothalamic regulation of sleep and circadian rhythms. Nature. 2005;437(7063):1257-1263.
Braak H, et al., Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol. 2006;112(4):389-404.
Price JL, et al., Tangles and plaques in nondemented aging and "preclinical" Alzheimer's disease. Ann Neurol. 1999;45(3):358-368.
Price JL, et al., Neuropathology of nondemented aging: Presumptive evidence for preclinical Alzheimer disease. Neurobiol Aging. 2009;30(7):1026-1036.
Brier MR, et al., Tau and A imaging, CSF measures, and cognition in Alzheimer's disease. Sci Transl Med. 2016;8(338):338ra66.
Yamada K, et al., Neuronal activity regulates extracellular tau in vivo. J Exp Med. 2014;211(3):387-393.
Price JC, et al., Analysis of proteome dynamics in the mouse brain. Proc Natl Acad Sci USA. 2010;107(32):14508-14513.
Di Meco A, et al., Sleep deprivation impairs memory, tau metabolism, and synaptic integrity of a mouse model of Alzheimer's disease with plaques and tangles. Neurobiol Aging. 2014;35(8):1813-1820.
Rothman SM, et al., Chronic mild sleep restriction accentuates contextual memory impairments, and accumulations of cortical A and pTau in a mouse model of Alzheimer's disease. Brain Res. 2013;1529:200-208.
Lim AS, et al., Modification of the relationship of the apolipoprotein E 4 allele to the risk of Alzheimer disease and neurofibrillary tangle density by sleep. JAMA Neurol. 2013;70(12):1544-1551.
Fjell AM, et al., Neuroinflammation and Tau interact with amyloid in predicting sleep problems in aging independently of atrophy. Cereb Cortex. 2017;(May 2018):1-11.
Medeiros R, et al., The role of tau in Alzheimer's disease and related disorders. CNS Neurosci Ther. 2011;17(5):514-524.
Platt B, et al., Abnormal cognition, sleep, EEG and brain metabolism in a novel knock-in Alzheimer mouse, PLB1. PLoS One. 2011;6(11):e27068.
Jyoti A, et al., Progressive age-related changes in sleep and EEG profiles in the PLB1Triple mouse model of Alzheimer's disease. Neurobiol Aging. 2015;36(10):2768-2784.
Stevanovic K, et al., Disruption of normal circadian clock function in a mouse model of tauopathy. Exp Neurol. 2017;294:58-67.
Holth JK, et al., Altered sleep and EEG power in the P301S Tau transgenic mouse model. Ann Clin Transl Neurol. 2017;4(3):180-190.
Walsh CM, et al., Sleepless night and day, the plight of progressive supranuclear palsy. Sleep. 2017;40(11):zsz154. doi:10. 1093/sleep/zsx154
Arnulf I, et al., REM sleep behavior disorder and REM sleep without atonia in patients with progressive supranuclear palsy. Sleep. 2005;28(3):349-354.
Bu XL, et al., Serum amyloid-beta levels are increased in patients with obstructive sleep apnea syndrome. Sci Rep. 2015;5:13917.
Motamedi V, et al., Elevated Tau and interleukin-6 concentrations in adults with obstructive sleep apnea. Sleep Med. 2018;43:71-76.
Osorio RS, et al., Orexin-A is associated with increases in cerebrospinal fluid phosphorylated-Tau in cognitively normal elderly subjects. Sleep. 2016;39(6):1253-1260.
Slats D, et al., Reciprocal interactions between sleep, circadian rhythms and Alzheimer's disease: Focus on the role of hypocretin and melatonin. Ageing Res Rev. 2013;12(1):188-200.
Liguori C, et al., Orexinergic system dysregulation, sleep impairment, and cognitive decline in Alzheimer disease. JAMA Neurol. 2014;71(12):1498-1505.
Fagan AM, et al., Cerebrospinal fluid tau/beta-amyloid(42) ratio as a prediction of cognitive decline in nondemented older adults. Arch Neurol. 2007;64(3):343-349.
Harada R, et al., 18F-THK5351: A novel PET radiotracer for imaging neurofibrillary pathology in Alzheimer disease. J Nucl Med. 2016;57(2):208-214.
Schöll M, et al., PET imaging of tau deposition in the aging human brain. Neuron. 2016;89(5):971-982.
Villemagne VL, et al., Author correction: Imaging tau and amyloid-proteinopathies in Alzheimer disease and other conditions. Nat Rev Neurol. 2018;14(7):446.
Qiu H, et al., Chronic sleep deprivation exacerbates learning-memory disability and Alzheimer's disease-like pathologies in APP(swe)/PS1(E9) mice. J Alzheimers Dis. 2016;50(3):669-685.
Terry RD, et al., Physical basis of cognitive alterations in Alzheimer's disease: Synapse loss is the major correlate of cognitive impairment. Ann Neurol. 1991;30(4):572-580.
de Leon MJ, et al., MRI and CSF studies in the early diagnosis of Alzheimer's disease. J Intern Med. 2004;256(3):205-223.
Bouwman FH, et al., CSF biomarkers and medial temporal lobe atrophy predict dementia in mild cognitive impairment. Neurobiol Aging. 2007;28(7):1070-1074.
Vemuri P, et al., ; Alzheimer's Disease Neuroimaging Initiative. MRI and CSF biomarkers in normal, MCI, and AD subjects: Predicting future clinical change. Neurology. 2009;73(4):294-301.
Frisoni GB, et al., The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol. 2010;6(2):67-77.
Villemagne VL, et al., ; Australian Imaging Biomarkers and Lifestyle (AIBL) Research Group. Amyloid deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer's disease: A prospective cohort study. Lancet Neurol. 2013;12(4):357-367.
Thompson PM, et al., Dynamics of gray matter loss in Alzheimer's disease. J Neurosci. 2003;23(3):994-1005.
Fotenos AF, et al., Normative estimates of cross-sectional and longitudinal brain volume decline in aging and AD. Neurology. 2005;64(6):1032-1039.
Khan TK. An algorithm for preclinical diagnosis of Alzheimer's disease. Front Neurosci. 2018;12:275.
Takeuchi H, et al., Shorter sleep duration and better sleep quality are associated with greater tissue density in the brain. Sci Rep. 2018;8(1):1-8. doi:10. 1038/s41598-018-24226-0
Carvalho DZ, et al., Excessive daytime sleepiness and fatigue may indicate accelerated brain aging in cognitively normal late middle-aged and older adults. Sleep Med. 2017;32:236-243.
Dubé J, et al., Cortical thinning explains changes in sleep slow waves during adulthood. J Neurosci. 2015;35(20): 7795-7807.
Sanchez-Espinosa MP, et al., Sleep deficits in mild cognitive impairment are related to increased levels of plasma amyloid- A nd cortical thinning. Neuroimage. 2014;98:395-404.
Van Someren EJW, et al., Medial temporal lobe atrophy relates more strongly to sleep-wake rhythm fragmentation than to age or any other known risk. Neurobiol Learn Mem. 2018; In Press. doi:10. 1016/j. nlm. 2018. 05. 017
Spira AP, et al., Sleep duration and subsequent cortical thinning in cognitively normal older adults. Sleep. 2016;39(5):1121-1128. doi:10. 5665/sleep. 5768
Lo JC, et al., Sleep duration and age-related changes in brain structure and cognitive performance. Sleep. 2014;37(7):1171-1178.
Sexton CE, et al., Poor sleep quality is associated with increased cortical atrophy in community-dwelling adults. Neurology. 2014;83(11):967-973.
Zhang J, et al., Extended wakefulness: Compromised metabolics in and degeneration of locus ceruleus neurons. J Neurosci. 2014;34(12):4418-4431.
Zhu Y, et al., Selective loss of catecholaminergic wake active neurons in a murine sleep apnea model. J Neurosci. 2007;27(37):10060-10071.
Farajnia S, et al., Aging of the suprachiasmatic clock. Neuroscientist. 2014;20(1):44-55.
Manaye KF, et al., Locus coeruleus cell loss in the aging human brain: A non-random process. J Comp Neurol. 1995;358(1):79-87.
Nyakas C, et al., The basal forebrain cholinergic system in aging and dementia. Rescuing cholinergic neurons from neurotoxic amyloid-42 with memantine. Behav Brain Res. 2011;221(2):594-603.
Palomba M, et al., Decline of the presynaptic network, including GABAergic terminals, in the aging suprachiasmatic nucleus of the mouse. J Biol Rhythms. 2008;23(3): 220-231.
Brownell SE, et al., Age- A nd gender-specific changes of hypocretin immunopositive neurons in C57Bl/6 mice. Neurosci Lett. 2010;472(1):29-32.
Stern AL, et al., Wake-active neurons across aging and neurodegeneration: A potential role for sleep disturbances in promoting disease. Springerplus. 2015;4:25.
Satoh A, et al., Roles of tau pathology in the locus coeruleus (LC) in age-associated pathophysiology and Alzheimer's disease pathogenesis: Potential strategies to protect the LC against aging. Brain Res. 2019;1702:17-28. doi:10. 1016/j. brainres. 2017. 12. 027
Holth JK, et al., Sleep in Alzheimer's disease-beyond amyloid. Neurobiol Sleep Circadian Rhythm. 2017;2:4-14.
Schmidt C, et al., Age-related changes in sleep and circadian rhythms: Impact on cognitive performance and underlying neuroanatomical networks. Front Neurol. 2012;3:118.
Lambert C, et al., Characterizing aging in the human brainstem using quantitative multimodal MRI analysis. Front Hum Neurosci. 2013;7:462.
Callaghan MF, et al., Widespread age-related differences in the human brain microstructure revealed by quantitative magnetic resonance imaging. Neurobiol Aging. 2014;35(8):1862-1872.
Weiskopf N, et al., Advances in MRI-based computational neuroanatomy: From morphometry to in-vivo histology. Curr Opin Neurol. 2015;28(4):313-322.
Kopeikina KJ, et al., Soluble forms of tau are toxic in Alzheimer's disease. Transl Neurosci. 2012;3(3):223-233.
Duyckaerts C, et al., PART is part of Alzheimer disease. Acta Neuropathol. 2015;129(5):749-756.
Morin CM, et al., Cognitive behavioral therapy, singly and combined with medication, for persistent insomnia: A randomized controlled trial. JAMA. 2009;301(19):2005-2015.
Van Someren EJ, et al., Bright light therapy: Improved sensitivity to its effects on rest-activity rhythms in Alzheimer patients by application of nonparametric methods. Chronobiol Int. 1999;16(4):505-518.
Yang PY, et al., Exercise training improves sleep quality in middle-aged and older adults with sleep problems: A systematic review. J Physiother. 2012;58(3):157-163.