Sleep-Wake Regulation and the Hallmarks of the Pathogenesis of Alzheimer’s Disease

Van Egroo, M.¹, Narbutas, J.¹,², Chylinski, D.¹, Villar González, P.¹, Maquet, P.¹,³, Salmon, E.¹,²,³, Bastin, C.¹,², Collette, F.¹,², Vandewalle, G.¹*

¹ GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.
² Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium.
³ Department of Neurology, University Hospital of Liège, Liège, Belgium.

*Corresponding author: Gilles Vandewalle, GIGA-Cyclotron Research Centre-In Vivo Imaging, Bâtiment B30, Allée du VI Août, 8, 4000 Liège, Belgium, +3243662316, gilles.vandewalle@uliege.be
Abstract

While efficient treatments for Alzheimer’s disease (AD) remain elusive, a growing body of research has highlighted sleep-wake regulation as a potential modifiable factor to delay disease progression. Evidence accumulated in recent years is pointing toward a tight link between sleep-wake disruption and the three main hallmarks of the pathogenesis of AD, i.e. abnormal amyloid-beta (Aβ) and tau proteins accumulation, and neurodegeneration. However, all three hallmarks are rarely considered together in the same study. In this review, we gather and discuss findings in favor of an association between sleep-wake disruption and each AD hallmarks in animal models and in humans, with a focus on the preclinical stages of the disease. We emphasize that these relationships are likely bidirectional for each of these hallmarks. Altogether, current findings provide strong support for considering sleep-wake disruption as a true risk factor in the early unfolding of AD, but more research integrating recent technical advances is needed, particularly with respect to tau protein and neurodegeneration. Interventional longitudinal studies among cognitively healthy older individuals should assess the practical use of improving sleep-wake regulation to slow down the progression of AD pathogenesis.

Keywords: Sleep-wake regulation, Circadian rhythms, Alzheimer’s disease, Cognitive decline, Amyloid-beta, Tau, Neurodegeneration

Statement of significance: Here, we integrate within a single review the findings associating sleep-wake regulation and the three main hallmarks of Alzheimer’s disease (AD) pathogenesis in the preclinical stages of the disease. The causality of these relationships is discussed and the emphasis is placed on the bidirectionality between sleep-wake quality and AD neuropathological processes. As current research provides strong support for considering
sleep-wake disruption as a true risk factor in the early unfolding of AD, the practical use of improving sleep and wakefulness to hinder AD pathogenesis should be further investigated by researchers and clinicians.

Introduction

The current search for an Alzheimer’s disease (AD) treatment, although encouraging, is still failing to provide efficient therapies to significantly delay disease progression, and the existing ones only grant marginal symptomatic relief. Indeed, several recent clinical trials were unsuccessful in developing new drug therapies against AD. With an estimated healthcare cost of 818 billion US dollars per year worldwide, AD, the most prevalent form of dementia, represents an important socio-economic and scientific challenge in our ever-aging society. Some consider that delaying the onset of AD by just 5 years would decrease AD costs by 40%. Early detection and prevention are promising means to reach this objective. However, only 30% of AD cases are considered to be associated with recognized environmental risk factors for AD (diabetes, low education, smoking, lack of physical activity, hypertension, and depression) and acting on them would only moderately attenuate the foreseen increase in AD prevalence. Hence, identifying novel modifiable protective and risk factors for AD is crucially needed. These novel factors should facilitate the early detection of an increased risk for AD, even in asymptomatic individuals, and allow for more efficient prevention. In the present review paper, we argue that the regulation of the sleep-wake cycle and its disruption constitute such novel factors. The last decade has indeed seen a growing body of evidence supporting the link between AD-related processes and the regulation of sleep and wakefulness. Accordingly, a recent meta-analysis of 27 observational studies revealed that approximately 15% of AD in the population may be...
attributed to treatable sleep problems, and that individuals with sleep-related issues exhibit a 1.55 times higher risk of developing the disease13.

The main pathophysiological hallmarks of AD are the abnormal accumulation in the brain of amyloid-beta (A\textbeta) protein in plaques and of tau protein in neurofibrillary tangles (NFTs), together with neurodegeneration, i.e. synaptic and neuronal loss14. These hallmarks contribute to predicting the conversion of mild cognitive impairment (MCI), a prodromal phase of AD, to fully declared AD15,16. Importantly, it is now well established that A\textbeta and tau protein accumulations as well as brain atrophy start decades before MCI or AD symptoms onset. A period corresponding to AD ‘preclinical’ stages has therefore been proposed and encompasses the 10 to 20 years preceding observable cognitive impairments15,17. It is important to stress that AD preclinical stages reflect an increased risk for the disease rather than being a deterministic feature: whether and when one will develop symptomatic AD cannot be established based solely on the presence of AD pathophysiological hallmarks. Nevertheless, together with Apolipoprotein E (APOE) polymorphism, the strongest genetic risk factor for sporadic AD18-20, these pathophysiological changes offer the current best bases for applying prevention strategies to individuals at risk of developing sporadic AD.

Here, we provide a narrative review of the evidence for the relationship between the disruption of the sleep-wake cycle and the hallmarks of AD (i.e. A\textbeta burden, tau burden, and neurodegeneration) during its preclinical stages, both in humans and animal models. The papers linking sleep-wake regulation and AD pathophysiology that were considered are summarized in an overview table for each hallmark, i.e. at the end of the A\textbeta section (\textbf{Table 1}), of the tau section (\textbf{Table 2}), and of the neurodegeneration section (\textbf{Table 3}). We will only discuss the late-onset sporadic form of AD as it represents the vast majority of AD cases.
compared with the early-onset familial form which accounts for less than 5% of AD cases.

Sleep-wake regulation and amyloid-beta

Aβ refers to peptides of 36-43 amino acids that normally exist in the brain in a soluble form but become toxic when aggregated into diffusible oligomers and eventually form extracellular insoluble amyloid plaques. In non-pathological conditions, the physiological role of Aβ is uncertain but is suspected to participate to normal synaptic function. Aβ40 is the major Aβ species (~80-90%) produced by β- and γ-secretase in the sequential enzymatic cleavage of the larger transmembrane amyloid precursor protein (APP). Aβ42, one of the minor species (~5-10%), plays a crucial role in the aggregation of amyloid into plaques because of its hydrophobic and fibrillogenic properties. One can monitor AD pathophysiology progression with positron emission tomography (PET) using Aβ ligands, but Aβ42 assay in the cerebrospinal fluid (CSF) is also a sensitive and common biomarker for AD. In fact, lower CSF Aβ42 concentration is thought to reflect and even precede amyloid plaque formation in the brain.

The AD-related pathophysiological process of Aβ follows a stereotyped progression pattern, with Aβ deposits first found in the neocortex. As the disease progresses, allocortical brain regions (e.g. entorhinal cortex, hippocampus) are involved as well as nuclei from the basal forebrain. Ultimately, Aβ burden encompasses brainstem nuclei and the cerebellum. The prevailing theory of AD pathogenesis hypothesizes that the accumulation of Aβ into insoluble plaques is the key initiator of a series of pathogenic processes that eventually lead to AD. At first, changes in Aβ levels caused by an increase in total Aβ production and/or a reduced clearance result in Aβ deposits that impede synaptic function and diminish long-term potentiation of neuronal circuits. Inflammatory responses and plaque formation further
amplify synaptic and neuronal damage, precipitating widespread neuronal dysfunction, cell death, and ultimately dementia with plaque and tangle pathology. Although the broad outlines of the so-called ‘amyloid cascade hypothesis’ have been supported by the work of many researchers, whether Aβ accumulation is the prime event in the development of AD neuropathological processes is still not clearly established. Furthermore, soluble forms of Aβ, i.e. the precursors that subsequently lead to Aβ plaques, might be more toxic than the aggregated insoluble forms: oligomeric neurotoxic species of Aβ bind to different components of neuronal and non-neuronal plasma membranes, and induce complex patterns of synaptic dysfunction and synapse loss.

The striking role of the sleep-wake cycle in the unfolding of Aβ pathology finds its roots in two landmark findings: the discovery that soluble Aβ dynamics are strongly associated with sleep and wakefulness, and the existence of a sleep-related metabolite clearance system in the brain. Using in vivo microdialysis, Kang and colleagues investigated hippocampal Aβ levels during wakefulness and sleep in wild-type mice and Tg2576 mice, a well-characterized mouse model of AD known to overexpress a mutant form of human APP. First, they found that interstitial fluid (ISF) Aβ levels of Tg2576 mice exhibit a diurnal variation, with a significant decrease of approximately 25% during the light period (i.e. when mice sleep most) relative to the dark period. Crucially, they observed that the same pattern of variation is also present in the ISF of wild-type mice and in the CSF of young healthy humans, indicating that Aβ fluctuation over a 24h-period is inherent to normal cellular physiology. Furthermore, sleep-deprived mice showed significantly increased Aβ levels that were promptly reduced after sleep recovery. In order to unravel the underlying molecular mechanisms, the potential role of orexin, a peptide promoting arousal and wakefulness, was put forward. Interestingly, orexin infusion increased ISF Aβ levels.
during the light period while an orexin receptor antagonist abolished the previously observed diurnal variation. At a broader level, chronic sleep restriction in mice (20 hours daily for 21 days) was associated with greater Aβ plaque burden among several brain regions, whereas enhancing sleep via chronic orexin antagonist treatment (once daily for 8 weeks) was related to reduced Aβ plaque deposition.

The characterization of the sleep-wake modulation of Aβ dynamics was further expanded to include a recently described process of brain cellular waste regulation, called the ‘glymphatic system’ \(^ {42,48}\). This system consists in convective fluxes from the para-arterial CSF through ISF and toward the para-venous space that allow neuronal products to be transported to the systemic circulation for clearance \(^ {48,49}\). The glymphatic process can be altered by genetic variations affecting aquaporin 4 water channels \(^ {50}\) and has been linked to AD and other dementias \(^ {51}\). Using two-photon imaging of the brain of living adult mice, Xie et al.\(^ {42}\) found that the glymphatic system is strongly regulated by the sleep-wake cycle. They observed that the CSF influx was highly increased in the brain of sleeping and anesthetized mice compared to awake littermates. In turn, the larger CSF influx led to a more efficient glymphatic clearance, as illustrated by a rate of interstitial Aβ removal up to twice as fast in sleeping mice. Interestingly, the authors found that the volume of the interstitial space was over 60% greater when mice were sleeping or anesthetized, thus allowing easier CSF movement and, therefore, more efficient glymphatic clearance of neuronal by-products such as Aβ. Moreover, elevated Aβ levels as a consequence of sleep deprivation have been observed in CSF samples both in humans \(^ {52}\) and in adult rats \(^ {53}\). One night of sleep deprivation also appeared to significantly increase PET Aβ plaque burden in the hippocampus and the thalamus in humans \(^ {54}\), although it is unclear how acute sleep deprivation may affect short-term plaque formation.
It seems that slow wave sleep (SWS; or ‘deep sleep’, dominated by large amplitude and low frequency EEG oscillations) is a key component of the association between sleep-wake regulation and Aβ aggregation. The release of soluble Aβ in the interstitial space was shown to depend on endogenous neuronal activity, with extended wakefulness leading to an overall increase in neuronal firing and thus to elevated Aβ levels. In addition, slow wave activity (SWA; a quantification of sleep slow waves during sleep) in frontal regions was associated with higher CSF Aβ42 levels in cognitively normal older individuals. Finally, a recent study showed that specific disruption of SWS during one night induced higher levels of CSF Aβ40 on the following morning. Altogether, these results suggest that reduction of SWS may lead to a relative augmentation in neuronal activity during sleep that, in turn, increases the production of Aβ and/or reduces the effectiveness of its clearance. Recent evidence shows that Aβ concentration in the CSF increases following sleep deprivation while it does not decrease when attempting to enhance SWS, which may suggest that altered Aβ production, rather than its clearance, underlies the link between altered sleep and Aβ levels.

It remains to be determined whether the well-established modification in sleep structure in older people, including a significant reduction of SWS duration, contributes to or is, in part, a consequence of the age-related increase in Aβ burden in healthy individuals.

The depicted relationship between sleep-wake disruption and Aβ deposition is indeed most likely bidirectional. Albeit we emphasized that sleep-wake disorganization accelerates Aβ accumulation, it seems that Aβ deposits conversely impede sleep-wake regulation. A transgenic APP mouse model showed changes in the sleep-wake cycle that closely followed the emergence of Aβ plaques, and the intensity of these changes correlated with the extent of Aβ deposits. Interestingly, active Aβ immunization prevented these sleep-wake modifications, suggesting a direct impact of the presence of Aβ aggregates on
sleep-wake regulation. Likewise, Aβ accumulation impaired slow waves propagation during sleep in AD mice whereas exogenous Aβ infusion disrupted SWA in wild-type mice until wash-out. In a Drosophila model of AD including human APP and beta-secretase cleaving enzyme expression, sleep is significantly disrupted when these proteins are co-expressed.

Many other associations between sleep-wake regulation and Aβ are described below. We stress, however, that it is unclear whether these associations result from a causal impact of sleep-wake dysfunction or whether the latter may be a consequence of abnormal presence of Aβ. For instance, several studies showed that self-reported sleep quality is associated with Aβ deposition measured with PET and CSF markers in healthy older individuals. In two longitudinal studies, self-reported excessive daytime sleepiness at baseline was linked to increased accumulation of Aβ over 7 and 15.7 years in cognitively normal older individuals. Self-reported sleep latency was also associated with brain Aβ deposition in a well-characterized cohort of older men and women, while poor self-reported sleep history was associated with increased Aβ burden in the hippocampus and the thalamus. Objective measures of sleep efficiency, based on actigraphic recordings, were also linked to abnormal levels of amyloid in the CSF in healthy older adults. Likewise, an association was reported between PET Aβ pathology in the medial prefrontal cortex and slow waves generation.

Obstructive sleep apnea (OSA), a well-established sleep disruption factor associated with a higher risk of developing cognitive impairments and AD, has been linked to increased CSF and PET Aβ burden in cognitively normal older adults. One hypothesis is that glymphatic clearance processes are altered by mechanical changes during respiratory efforts in OSA patients, thus promoting protein accumulation. Finally, rest-activity rhythm fragmentation, objectively estimated by actigraphic measures, has recently been associated with PET Aβ plaque burden, suggesting the implication of a circadian regulation of
proteostasis. This relationship remained significant after adjusting for age, implying that aging and preclinical Aβ pathology likely have separate contributions on sleep-wake disturbances.

Crucially, the interaction between worse sleep efficiency and abnormal CSF amyloid levels may account for worse memory function in the preclinical stages of AD. This could mean that beyond the respective negative impact of poor sleep-wake quality and of Aβ burden on cognitive function, there may be an interaction effect that would lead to a multiplicative impact of both, at least when exceeding a certain threshold. However, isolating their respective contributions on cognition may constitute a difficult challenge since they are both changing importantly in aging.

The numerous findings reviewed here make a strong case for the bidirectional link between sleep-wake regulation and Aβ deposition. Interestingly, low-dose benzodiazepine administration to AD mice improved SWS and cognition, suggesting a potential role for γ-aminobutyric acid inhibition to alleviate part of Aβ negative impact through sleep. It is unknown, however, whether acting on Aβ per se and reducing its burden would result in an improved sleep-wake regulation. Likewise, no studies have yet attempted to act on sleep-wake quality to reduce Aβ burden or to slow down its increase.

[INSERT TABLE 1 about here]

Sleep-wake regulation and tau

Tau is a microtubule-associated protein whose primary role is to maintain the stability of the axonal cytoskeleton. In the course of several neurodegenerative diseases, including AD, tau undergoes abnormal hyperphosphorylation, oligomerization then conversion into insoluble filamentous state. Unable to interact with microtubules, hyperphosphorylated
tau assembles into toxic oligomers which eventually form intracellular NFTs89. Whether these NFTs are toxic or not remains debated90, as they may not impede normal neuronal function once released in the extracellular space upon neuron death91. As for Aβ, the AD-related pathophysiological process of tau follows a stereotyped progression pattern92. As early as in the first decades of life, hyperphosphorylated tau can be found in the brainstem locus coeruleus and other subcortical nuclei64,93, which are keys sites in sleep-wake regulation94. During the preclinical stages of AD, tau pathology is observed in the medial temporal lobe, and further spreads to the neocortex as the disease progresses95–97. Interestingly, abnormal levels of tau protein in the CSF in preclinical AD constitute an accurate proxy measure of tau deposition in the temporal lobe, which in turn is a strong predictor of subsequent cognitive trajectory98.

Critically, Yamada et al.99 demonstrated using in vivo microdialysis in wild-type mice that increasing neuronal activity significantly elevated ISF tau levels within hours. Similar to Aβ regulation processes, this indicates that a relative increase in neuronal activity, as observed during extended wakefulness or chronic sleep restriction, could lead to an increase in extracellular tau production that would ultimately be reflected in CSF measures. However, tau is a relatively stable protein with a slow turnover rate, so that around 11 days are required before CSF changes can be observed99,100. This may explain why, contrary to Aβ, one night of acute sleep disruption could not be linked to an increase in CSF tau levels assessed on the subsequent morning in humans52,60. In fact, worse home sleep quality measured with actigraphic recordings during the week preceding in-lab sleep disruption was positively associated with higher CSF tau levels60. In mouse models with plaques and tangles pathology, restricting sleep to 4 hours per day for 8 weeks101, or to 6 hours per day for 6 weeks102, led to elevated insoluble tau levels. Accordingly in humans, a large longitudinal
cohort study found that actigraphic measures of better sleep consolidation in older individuals significantly attenuated the effect of APOE genotype on observed NFTs density at autopsy.103

As for Aβ, the link between sleep-wake regulation and tau is likely bidirectional. A longitudinal study in cognitively normal older individuals showed that higher CSF tau levels were predictive of overall poorer sleep quality after 3 years.104 However, this association was only present in individuals with significant Aβ deposition, further supporting the deleterious nature of tau and Aβ co-existence.105 In addition, a human tau and amyloid knock-in mouse model of AD exhibits increased wake bout duration combined with decreased rapid eye movement (REM) and non-REM sleep duration.106,107 Transgenic mice expressing tau without Aβ abnormal accumulation display similar sleep-wake alterations, suggesting that tau pathology alone can induce impaired sleep and wakefulness in such animal models.108 Of particular interest, the extent of the observed sleep impairments correlated with tau pathology intensity in brainstem regions regulating sleep.109 Likewise, progressive supranuclear palsy, a tau only form of frontotemporal dementia that mainly involves brainstem and thalamic regions, was associated with more fragmented sleep and increased daytime sleepiness,110,111 further suggesting a causal role for abnormal tau aggregation and sleep dysfunction.

Again similar to Aβ, many other associations between tau pathology and sleep-wake regulation have been reported, but it is difficult to identify the directionality of their interplay. In young and middle-aged individuals, OSA has been associated with elevated levels of tau protein concentration in blood.112,113 However, a recent study did not find any significant association between tau burden measured with PET and sleep disordered breathing in a cohort of 119 older males.79 In cognitively normal older people, CSF levels of phosphorylated tau were positively correlated with an increase in orexin concentration, potentially because elevated orexin levels favor fragmented sleep,114 as previously observed in AD patients.115,116
Akin to Aβ, both objective and subjective measures of sleep quality (respectively, sleep efficiency derived from actigraphic recordings, and multidimensional self-reported scales) have been associated with elevated CSF tau levels \(^{28,60}\). Finally, the fragmentation of the circadian rhythmicity of sleep and wakefulness positively correlates with the ratio between CSF phosphorylated tau and Aβ\(^{42}\), a sensitive predictor of cognitive decline in nondemented older individuals \(^{82,117}\).

Although convincingly demonstrated, the proofs of the bidirectionality of the link between tau pathology and sleep-wake regulation are less numerous than for Aβ. This probably resides in part in the absence of \textit{in vivo} radiotracer for tau until very recently \(^{118,119}\), implying that one could only rely on CSF measure to infer tau burden \textit{in vivo}. While the first PET markers suffered from relative unspecific bindings, the new generation seems to be particularly specific to tau \(^{120}\), such that our understanding of the association between tau and the sleep-wake cycle is likely to grow swiftly.

Critically, chronic sleep-wake disruption was consistently associated with tau phosphorylation changes and long-lasting memory deficits not only in AD mouse models, but also in wild-type littermates \(^{121}\). This suggests that recurrent sleep deprivation plays a significant role in tau-related measures as well as cognitive outcomes, beyond at least some genetic AD predispositions. Whether improving sleep-wake quality would reduce tau burden, or slow down its progression to then improve cognition, has however not been tested yet. Likewise, no attempt has been made until now to address whether pharmacologically reducing tau burden would improve cognition via an enhancement of sleep-wake quality.

[INSERT TABLE 2 about here]

Sleep-wake regulation and neurodegeneration
Synaptic and neuronal loss represents one of the strongest pathological correlates of dementia14,122, and a reliable predictor of conversion from MCI to AD123–125. Neurodegeneration of the medial temporal lobe can be detected up to 4 years before the clinical diagnosis of AD, and correlates with tau deposition as well as early memory deficits126,127. The dynamic of brain atrophy mirrors the propagation of NFTs in early stages, then neuronal loss is progressively observed in temporo-parietal cortices, and ultimately in frontal regions128. In asymptomatic individuals, it was suggested that baseline rates of brain atrophy are accelerated in those that further transition to MCI129. Although no magnetic resonance imaging (MRI) marker has been proved efficient to identify alone the preclinical stages of the disease, recent combinations of neuroimaging techniques hold strong potential for early detection of preclinical AD130.

As for tau and Aβ burden, sleep-wake regulation is associated with neurodegeneration. In young adults, sleep continuity and sleep duration were associated with brain white matter integrity, based on measures of mean diffusivity derived from diffusion-weighted imaging131. In healthy older individuals, self-reported excessive daytime sleepiness and fatigue were associated to MRI measures of global and regional atrophy, as well as hippocampal volume reduction132. Similarly, MRI based cortical thinning of several brain areas was linked to an age-related decrease in slow wave density and amplitude, based on electroencephalographic measures during sleep133. In addition, reduction of REM sleep duration in MCI subjects was associated with grey matter loss in regions that are affected early in AD, such as the precuneus, the posterior cingulate, and the postcentral gyrus134. Likewise, actigraphic assessment of sleep-wake rhythm fragmentation was related to the atrophy of the medial temporal lobe measured by expert visual evaluation (use of visual scale, i.e. no computerized quantification of MRI images)135.
In cognitively normal older individuals, sleep durations shorter or longer than 7 hours have been associated with higher rates of frontotemporal grey matter decline in longitudinal assessments over 8 years. Others found that short sleep duration similarly affects the expansion rates of the ventricles. Moreover, self-reported sleep quality indices correlated with the rate of cortical atrophy measured over an average of 3.5 years, in a widespread set of frontal, temporal and parietal areas. These longitudinal data suggest that sleep quality directly affects cortical atrophy. This view is further reinforced by the report of decreased neuron density in the locus coeruleus after extended wakefulness in wild-type mice. Critically, chronic sleep restriction in mice lead to neuronal loss in the locus coeruleus that could not be compensated for after a 6-month recovery period in normal sleep conditions.

Normal aging is also associated with structural changes in sleep-wake regulating structures. The locus coeruleus shows a limited decline in neuron number with age and undergoes a marked reduction in the number of its projections to the cortex and particularly to the prefrontal cortex. The basal forebrain, and especially the cholinergic neurons of the nucleus of Meynert, the suprachiasmatic nucleus corresponding to the master circadian clock, or the lateral hypothalamus secreting orexin and melanin-concentrating hormone, also undergo a decrease in neuron and/or axonal density in aging. These deficits are further aggravated in AD. However, the functional consequences of the changes in sleep-wake regulating subcortical structures are mostly unassessed. It is therefore unclear whether they directly contribute to the well-characterized degradation in sleep quality and sleep-wake regulation associated with aging.

Hence, age-related neurodegeneration must undoubtedly contributes to changes in sleep and in wakefulness, but direct evidence remains scarce. How neurodegeneration contributes to AD through sleep remains therefore unclear. In turn, how sleep-wake
dysfunction affects AD through neurodegeneration is not known. Addressing these issues is complicated notably because quantifying changes in brain structure in vivo is far from trivial. While the first demonstrations of age-related changes in MRI data were interpreted as indications of neurodegeneration, recent research showed that these changes may reflect modifications in neuronal iron or axonal myelin content rather than reflecting a mere loss of neurons.150,151 Crucially, the development of unbiased quantitative MRI152 will provide important tools to address the link between sleep-wake quality and brain structure and microstructure.

\textbf{Conclusions}

We reviewed findings indicating that disruption of sleep-wake regulation is linked to the hallmarks of AD pathogenesis in the preclinical stages of the disease, that is, many years before the cognitive symptoms emerge. Evidence for bidirectional relationships between sleep-wake regulation and the three hallmarks of AD pathophysiology has accumulated, albeit more convincingly with Aβ. Recent technical developments in MRI and PET in vivo measures of brain structure will help establishing these relationships.130 Yet, research is still limited by the sensitivity of current techniques. Indeed, PET imaging does not allow to quantify the earliest tau (e.g. in the brainstem) or Aβ deposits. Besides, soluble forms of misfolded Aβ and tau proteins may be more involved in AD progression and neuronal death compared with their aggregates.23,153 However, these soluble forms remain mostly undetectable in vivo and their impact on sleep-wake regulation is unknown. One could also consider that the locations of protein aggregates and of their soluble precursors is important, but this remains largely unexplored (see Mander et al.77 for the importance of medial prefrontal Aβ deposits for SWS).
The large time-window of AD pathophysiological progression is a great opportunity for preventive interventions. However, it also means that curative or preventive interventions may be applied too late in the process to be efficient, i.e. when irreversible damage has occurred. Thus, the earliest aspects associated with AD pathogenesis need to be established. Factors related to sleep-wake regulation are, in our view, excellent candidates based on the findings reviewed here, but also given the fact that the first signs of tau deposition are detected, post mortem, in the locus coeruleus. However, these first deposits are undetectable in vivo, and their functional consequences are unknown. In addition, tau accumulation may primarily represents age-related modifications, i.e. brain changes that are normal over the lifespan. This does not preclude these protein accumulations, variable across individuals, to contribute to the observed variability in age-related changes in sleep-wake regulation, or to be caused by the latter variability. It is therefore highly needed, and yet highly challenging, to separate what constitutes normal neurodegeneration, protein accumulations, and sleep-wake changes from what will contribute to AD pathology decades later.

The definite proofs that improving sleep and wakefulness in the preclinical stages of the disease causally slows down the AD neuropathological processes over decades still need to be provided. Conversely, whether hindering tau and Aβ accumulation as well as neurodegeneration may improve sleep has to be demonstrated. Longitudinal studies in interventional designs are of particular interest to provide these proofs, but they may not be available before long. Even in the absence of such evidence, one could consider applying cognitive behavioral therapy or increasing the amplitude of the rest-activity cycle with light and/or physical activity to modulate AD neuropathological processes through improved sleep and wakefulness quality. Given the high prevalence of sleep-wake complaints in our 24-7 society, these appear as useful examples of reasonable and easy strategies to...
improve brain function in the short term, and to decrease the odds of developing AD, particularly in those individuals that are more at risk.

List of Abbreviations: AD = Alzheimer’s disease; Aβ = Amyloid-beta; NFTs = Neurofibrillary tangles; MCI = Mild cognitive impairment; APOE = Apolipoprotein E; APP = Amyloid precursor protein; PET = Positron emission tomography; CSF = Cerebrospinal fluid; ISF = Interstitial fluid; SWS = Slow wave sleep; SWA = Slow wave activity; REM = Rapid eye movement; MRI = Magnetic resonance imaging

Disclosure Statement: MV, CB, FC, and GV are supported by the FNRS-Belgium. JN is supported by ULiège. DC and PVG are supported by an Actions de Recherche Concertées Grant ARC 17/21-09 of the Fédération Wallonie-Bruxelles.

Reference List

19. Michaelson DM. APOE ε4: The most prevalent yet understudied risk factor for
doi:10.1016/j.jalz.2014.06.015

doi:10.3978/j.issn.2305-5839.2015.01.19

doi:10.1101/cshperspect.a006262

doi:10.1038/nrneurol.2009.218

51. Rasmussen MK, Mestre H, Nedergaard M. The glympathic pathway in neurological

74. Spira AP, An Y, Wu MN, et al. Excessive daytime sleepiness and napping in...

90. Spires-Jones TL, Kopeikina KJ, Koffie RM, De Calignon A, Hyman BT. Are tangles...

120. Villemagne VL, Doré V, Burnham SC, Masters CL, Rowe CC. Imaging tau and...

127. Villemagne VL, Burnham S, Bourgeat P, et al. Amyloid β deposition,

134. Sanchez-Espinosa MP, Atienza M, Cantero JL. Sleep deficits in mild cognitive impairment are related to increased levels of plasma amyloid-β and cortical thinning. *Neuroimage.* 2014;98:395-404. doi:10.1016/j.neuroimage.2014.05.027

142. Manaye KF, McIntire DD, Mann DMA, German DC. Locus Coeruleus Cell Loss in the

156. Van Someren EJW, Swaab DF, Colenda CC, Cohen W, Mccall WV, Rosenquist PB. Bright Light Therapy Improved Rest-Activity Rhythms in Alzheimer Patients By

Table 1. Summary table of studies considered in this review and directly linking sleep-wake regulation to amyloid-beta.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Target population (N, age)</th>
<th>Sleep-wake variable(s)</th>
<th>Aβ variable(s)</th>
<th>Main outcome(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branger et al., 2016</td>
<td>Cognitively normal participants (51, 64.1 ± 10.6 years)</td>
<td>Self-reported sleep latency and sleep quality</td>
<td>Cortex Aβ burden</td>
<td>Longer sleep latency and poorer sleep quality were associated with increased Aβ burden.</td>
</tr>
<tr>
<td>Brown et al., 2016</td>
<td>Cognitively normal participants (184, 75.5 ± 6.1 years)</td>
<td>Sleep latency</td>
<td>Cortex Aβ burden</td>
<td>Longer sleep latency was associated with increased Aβ burden.</td>
</tr>
<tr>
<td>Busche et al., 2015</td>
<td>APP23xPS45 mice (5, 6-8 months), wild-type mice (6, 6-8 months)</td>
<td>Long-range SWA coherence</td>
<td>Cortex, hippocampus, and thalamus Aβ burden, exogenous Aβ infusion</td>
<td>SWA coherence between cortex and hippocampus was disrupted in transgenic mice.</td>
</tr>
<tr>
<td>Carvalho et al., 2018</td>
<td>Cognitively normal participants (283, 77.1 ± 4.8 years)</td>
<td>ESS</td>
<td>Longitudinal Aβ accumulation</td>
<td>Excessive daytime sleepiness was associated with increased Aβ accumulation over 7 years of follow-up.</td>
</tr>
<tr>
<td>Authors, Year</td>
<td>Group Description</td>
<td>Intervention/Measurements</td>
<td>Outcome</td>
<td>Summary</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Chen et al., 2017</td>
<td>Male Sprague-Dawley rats (40, 3 months)</td>
<td>2-4 days of paradoxical sleep deprivation</td>
<td>Hippocampus Aβ burden</td>
<td>Acute sleep deprivation was associated with increased Aβ burden</td>
</tr>
<tr>
<td>Dissel et al., 2017</td>
<td>Adult UAS-APP:BACE flies (30, 7 days)</td>
<td>Sleep latency, sleep fragmentation, sleep duration</td>
<td>Human APP and BACE co-expression</td>
<td>Co-expression of APP and BACE was associated with reduced sleep duration and increased sleep fragmentation.</td>
</tr>
<tr>
<td>Elias et al., 2018</td>
<td>Male cognitively normal OSA patients (42, 67.69 ± 5.37 years) and controls (77, 68.3 ± 3.86 years)</td>
<td>Apnea-hypopnea index</td>
<td>Cortex Aβ burden</td>
<td>Aβ burden was increased in OSA patients compared to controls.</td>
</tr>
<tr>
<td>Ju et al., 2013</td>
<td>Cognitively normal participants (142, 65.6 ± 8.2 years)</td>
<td>2 weeks of at-home actigraphic recording</td>
<td>CSF-Aβ level</td>
<td>Worse sleep efficiency was associated with abnormal CSF-Aβ level.</td>
</tr>
<tr>
<td>Ju et al., 2016</td>
<td>Cognitively normal OSA patients (10, 48-62) and controls (31, 45.8-65.7 years)</td>
<td>Apnea-hypopnea index, NREM SWA</td>
<td>CSF-Aβ level</td>
<td>Reduced NREM SWA was associated with increased CSF-Aβ level in controls.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Higher apnea-hypopnea index was associated with abnormal CSF-Aβ level.</td>
</tr>
</tbody>
</table>
| Study | Participants | Interventions | CSF-Aβ level | ISF-Aβ level, CSF-Aβ level, cortex and hippocampus Aβ burden | ISF- and CSF-Aβ levels showed fluctuations over a 24h-period.
Acute and chronic sleep deprivation were associated with increased ISF-Aβ level and increased Aβ burden, respectively.
Chronic almorexant injection was associated with reduced Aβ burden.
Total sleep deprivation was associated with increased CSF-Aβ level.
No association between SWS augmentation and CSF-Aβ level.
Increased Aβ burden was associated with impaired NREM SWA. |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ju et al., 2017</td>
<td>Cognitively normal participants (14, 35-65 years)</td>
<td>1 night of specific SWA disruption</td>
<td>CSF-Aβ level</td>
<td>No association between SWS augmentation and CSF-Aβ level.</td>
<td>No association between SWS augmentation and CSF-Aβ level.</td>
</tr>
</tbody>
</table>
| Kang et al., 2009 | Tg2576 mice (16, 3-9.5 months), C57BL6/SJL mice (20, 4 months), APP^{SWE}/PS1^{ΔE9} mice (38, 1.7-3.5 months)
Male cognitively normal participants (10, 20-50 years) | Acute sleep deprivation, sleep restriction to 4h/day for 3 weeks, almorexant injection (1/day for 8 weeks) | ISF-Aβ level, CSF-Aβ level, cortex and hippocampus Aβ burden | Acute sleep deprivation, sleep restriction to 4h/day for 3 weeks, almorexant injection (1/day for 8 weeks) | Acute sleep deprivation, sleep restriction to 4h/day for 3 weeks, almorexant injection (1/day for 8 weeks) |
<p>| Lucey et al., 2018 | Cognitively normal participants (8, 30-60 years) | 1 night of sleep deprivation, 1 night of SWS augmentation | CSF-Aβ level | No association between SWS augmentation and CSF-Aβ level. | No association between SWS augmentation and CSF-Aβ level. |
| Mander et al., 2015 | Cognitively normal participants (26, 75.1 ± 8.2 years) | NREM SWA | Medial prefrontal cortex Aβ burden | Increased Aβ burden was associated with impaired NREM SWA. | Increased Aβ burden was associated with impaired NREM SWA. |</p>
<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Study Design</th>
<th>Measure</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molano et al., 2017</td>
<td>Cognitively normal participants (98, 69 ± 7.1 years)</td>
<td>2 weeks of at-home actigraphic recording</td>
<td>CSF-Aβ level</td>
<td>The interaction between worse sleep efficiency and abnormal CSF-Aβ level was associated with poorer cognition.</td>
</tr>
<tr>
<td>Musiek et al., 2018</td>
<td>Cognitively normal participants (148, 66.6 ± 8.3 years)</td>
<td>1 week of at-home actigraphy</td>
<td>Cortex Aβ burden</td>
<td>Higher fragmentation of rest-activity circadian rhythm was associated with increased Aβ burden.</td>
</tr>
<tr>
<td>Ooms et al., 2014</td>
<td>Male cognitively normal participants (26, 40-60 years)</td>
<td>1 night of total sleep deprivation</td>
<td>CSF-Aβ level</td>
<td>Total sleep deprivation was associated with increased CSF-Aβ level.</td>
</tr>
<tr>
<td>Roh et al., 2012</td>
<td>APP<sup>SWE</sup>/PS1<sup>ΔE9</sup> mice (32, 3-9 months)</td>
<td>Wakefulness duration, NREM/REM sleep duration</td>
<td>Hippocampus Aβ burden, active immunization to Aβ</td>
<td>Increased Aβ burden was associated with increased wakefulness duration and decreased NREM/REM duration. Active immunization to Aβ restored the sleep-wake cycle.</td>
</tr>
<tr>
<td>Authors</td>
<td>Description</td>
<td>Findings</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Roh et al., 2014</td>
<td>APP$^{SWE/PS1\Delta E9/OR^{-}}$ mice (12, 3-6 months), APP/PS1-21/OR$^{-}$ mice (12, 3.5-8.5 months)</td>
<td>Orexin modulation, sleep restriction to 4h/day for 3 weeks</td>
<td>Cortex and hippocampus Aβ burden</td>
<td></td>
</tr>
<tr>
<td>Sharma et al., 2018</td>
<td>Cognitively normal OSA patients (111, 69.26 ± 7.41 years) and controls (97, 67.56 ± 7.32 years)</td>
<td>Apnea-hypopnea index</td>
<td>Higher apnea-hypopnea index was associated with abnormal CSF-Aβ level and increased Aβ accumulation over 2 years of follow-up.</td>
<td></td>
</tr>
<tr>
<td>Shokri-Kojori et al., 2017</td>
<td>Cognitively normal participants (24, 22-72 years)</td>
<td>1 night of total sleep deprivation, self-reported sleep history</td>
<td>Total sleep deprivation and poorer self-reported sleep history were associated with increased Aβ burden.</td>
<td></td>
</tr>
<tr>
<td>Spira et al., 2013</td>
<td>Cognitively normal participants (70, 53-91 years)</td>
<td>Self-reported sleep duration and sleep quality</td>
<td>Poorer sleep quality and shorter sleep duration were associated with increased Aβ burden.</td>
<td></td>
</tr>
<tr>
<td>Spira et al., 2018</td>
<td>Cognitively normal participants (123, 36.2-82.7 years)</td>
<td>Self-reported excessive daytime sleepiness and napping habits</td>
<td>Excessive daytime sleepiness was associated with increased Aβ burden</td>
<td></td>
</tr>
</tbody>
</table>

Chronic sleep restriction was associated with increased Aβ burden.
<table>
<thead>
<tr>
<th>Sprecher et al., 2015</th>
<th>Cognitively normal participants (98, 50-73 years)</th>
<th>ESS, MOS</th>
<th>Cortex Aβ burden</th>
<th>No association between napping and Aβ burden.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprecher et al., 2017</td>
<td>Cognitively normal participants (101, 62.9 ± 6.2 years)</td>
<td>MOS, ESS</td>
<td>CSF-Aβ level</td>
<td>Greater somnolence and sleep disturbances were associated with increased Aβ burden.</td>
</tr>
<tr>
<td>Varga et al., 2016</td>
<td>Cognitively normal participants (36, 66.8 ± 8.2 years)</td>
<td>SWA, SWS duration</td>
<td>CSF-Aβ level</td>
<td>Poorer sleep quality, greater sleep disturbance and daytime somnolence were associated with abnormal CSF-Aβ level.</td>
</tr>
<tr>
<td>Xie et al., 2013</td>
<td>C57BL6 mice (12, 3 months)</td>
<td>Natural and induced sleep</td>
<td>Aβ glymphatic clearance rate</td>
<td>Reduced SWA and SWS duration were associated with higher CSF-Aβ level.</td>
</tr>
</tbody>
</table>

Abbreviations: Aβ = Amyloid-beta; APP = amyloid precursor protein; BACE = Beta-secretase cleaving enzyme; CSF = Cerebrospinal fluid; ESS = Epworth sleepiness scale; ISF = Interstitial fluid; MOS = Medical outcomes study sleep scale; NREM = Non-rapid eye movement; OSA = Obstructive sleep apnea; REM = Rapid eye movement; SWA = Slow wave activity; SWS = Slow wave sleep.
Table 2. Summary table of studies considered in this review and directly linking sleep-wake regulation to tau.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Target population (N, age)</th>
<th>Sleep-wake variable(s)</th>
<th>Tau variable(s)</th>
<th>Main outcome(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arnulf et al., 2005</td>
<td>PSP patients (15, 68 ± 8 years) and cognitively normal controls (15, 67 ± 10 years)</td>
<td>Sleep fragmentation, REM sleep without atonia, RBD</td>
<td>Brain tau accumulation without abnormal Aβ burden</td>
<td>Higher sleep fragmentation, longer REM sleep without atonia duration, and RBD in PSP patients compared to controls.</td>
</tr>
<tr>
<td>Bu et al., 2015</td>
<td>Cognitively normal OSA patients (45, 44.31 ± 9.96 years)</td>
<td>Apnea-hypopnea index</td>
<td>Serum tau level</td>
<td>Higher apnea-hypopnea index was associated with higher serum tau level.</td>
</tr>
<tr>
<td>Di Meco et al., 2014</td>
<td>Male 3xTG mice (18, 10 months)</td>
<td>Sleep restriction to 4h/day for 8 weeks</td>
<td>Brain insoluble tau burden</td>
<td>Chronic sleep restriction was associated with increased insoluble tau level.</td>
</tr>
<tr>
<td>Elias et al., 2018</td>
<td>Male cognitively normal OSA patients (42, 67.69 ± 5.37 years) and controls (77, 68.3 ± 3.86 years)</td>
<td>Apnea-hypopnea index</td>
<td>Cortex tau burden</td>
<td>No difference in tau burden in OSA patients compared to controls.</td>
</tr>
<tr>
<td>Fjell et al., 2017</td>
<td>Cognitively normal participants (91, 64-89 years)</td>
<td>PSQI</td>
<td>CSF-tau level</td>
<td>Higher CSF-tau level was predictive of worse sleep quality in Aβ positive individuals.</td>
</tr>
<tr>
<td>Authors, Year</td>
<td>Participants</td>
<td>Measures</td>
<td>Results</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Holth et al., 2017</td>
<td>Male P301S mice (40, 3-12 months)</td>
<td>Wake bout duration, NREM/REM sleep duration</td>
<td>Higher brainstem tau burden was associated with increased wakefulness, decreased NREM and REM sleep duration.</td>
<td></td>
</tr>
<tr>
<td>Ju et al., 2017</td>
<td>Cognitively normal participants (14, 35-65 years)</td>
<td>1 week of at-home actigraphic recording, 1 night of specific SWA disruption</td>
<td>CSF-tau level</td>
<td></td>
</tr>
<tr>
<td>Jyoti et al., 2015</td>
<td>PLB1<sub>triple</sub> mice (14, 5-21 months)</td>
<td>Wake bout duration, NREM/REM sleep duration</td>
<td>No association between SWA disruption and CSF-tau level. Duplicate line</td>
<td></td>
</tr>
<tr>
<td>Lim et al., 2013</td>
<td>Cognitively normal participants (201, 85.9 ± 6.3 years)</td>
<td>10 days of actigraphic recordings</td>
<td>Better sleep consolidation was associated with decreased NFTs density.</td>
<td></td>
</tr>
<tr>
<td>Motamedi et al., 2017</td>
<td>Cognitively normal OSA patients (50, 34.9 ± 8 years)</td>
<td>Apnea-hypopnea index</td>
<td>Higher apnea-hypopnea index was associated with higher plasma tau level.</td>
<td></td>
</tr>
<tr>
<td>Study Authors</td>
<td>Participants Details</td>
<td>Intervention Details</td>
<td>Outcome Measures</td>
<td>Result Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>---</td>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Musiek et al., 2018</td>
<td>Cognitively normal participants (148, 66.6 ± 8.3)</td>
<td>1 week of at home actigraphy</td>
<td>CSF-tau level</td>
<td>Higher fragmentation of rest-activity circadian rhythm was associated with higher CSF-tau level.</td>
</tr>
<tr>
<td>Ooms et al., 2014</td>
<td>Cognitively normal men (26, 40-60 years)</td>
<td>1 night of total sleep deprivation</td>
<td>CSF-tau level</td>
<td>No association between total sleep deprivation and CSF-tau level.</td>
</tr>
<tr>
<td>Osorio et al., 2016</td>
<td>Cognitively normal participants (63, 69.59 ± 8.55 years)</td>
<td>CSF-orexin level</td>
<td>CSF-tau levels</td>
<td>Higher CSF-orexin level was associated with higher CSF-tau levels.</td>
</tr>
<tr>
<td>Platt et al., 2011</td>
<td>PLB1triple mice (11, 5-12 months)</td>
<td>Wake bout duration, NREM sleep duration</td>
<td>Cortex and hippocampus tau burden</td>
<td>Tau burden was associated with increased wakefulness and reduced NREM sleep duration.</td>
</tr>
<tr>
<td>Qiu et al., 2016</td>
<td>APPSWE/PS1ΔE9 mice (40, 4-10 months), wild-type littermates (40, 4-10 months)</td>
<td>Sleep restriction to 4h/day for 8 weeks</td>
<td>Frontal cortex and hippocampus tau burden</td>
<td>Chronic sleep deprivation was associated with long-lasting increased tau burden in both transgenic and wild-type mice.</td>
</tr>
<tr>
<td>Rothman et al., 2013</td>
<td>Male 3xTG mice (10, 14 months)</td>
<td>Sleep restriction to 6h/day for 6 weeks</td>
<td>Cortex and hippocampus tau burden</td>
<td>Chronic sleep restriction was associated with increased cortical tau burden.</td>
</tr>
<tr>
<td>Study</td>
<td>Participants/Model</td>
<td>Measures</td>
<td>Findings</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------------</td>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Sprecher et al., 2017</td>
<td>Cognitively normal participants (101, 62.9 ± 6.2 years)</td>
<td>MOS, ESS</td>
<td>Higher excessive daytime sleepiness and worse subjective sleep quality were associated with higher CSF-tau level.</td>
<td></td>
</tr>
<tr>
<td>Stevanovic et al., 2017</td>
<td>Tg4510 mice (11, 8-13 months)</td>
<td>Rest-activity circadian rhythm, clock gene (BMAL1, PER2) expression</td>
<td>SCN and hippocampus tau burden</td>
<td></td>
</tr>
<tr>
<td>Walsh et al., 2017</td>
<td>PSP patients (19, 70.94 ± 5.3 years) and cognitively normal controls (16, 72.50 ± 1 years)</td>
<td>Sleep latency, sleep duration, sleep fragmentation, subjective sleepiness</td>
<td>Long sleep latency, lower sleep duration, higher sleep fragmentation, and higher subjective sleepiness were found in PSP patients compared to controls.</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: Aβ = Amyloid-beta; CSF = Cerebrospinal fluid; ESS = Epworth sleepiness scale; MOS = Medical outcomes study sleep scale; NFTs = Neurofibrillary tangles; NREM = Non-rapid eye movement; OSA = Obstructive sleep apnea; PSQI = Pittsburgh sleep quality index; RBD = Rapid eye movement sleep behavior disorder; REM = Rapid eye movement; SCN = Suprachiasmatic nucleus; SWA = Slow wave activity.
Table 3. Summary table of studies considered in this review and directly linking sleep-wake regulation to neurodegeneration.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Target population (N, age)</th>
<th>Sleep-wake variable(s)</th>
<th>Neurodegeneration variable(s)</th>
<th>Main outcome(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carvalho et al., 2017</td>
<td>Cognitively normal participants (1374, 72.16 ± 8.8 years)</td>
<td>ESS, fatigue</td>
<td>Grey matter integrity</td>
<td>Higher excessive daytime sleepiness and fatigue were associated with lower cortical thickness.</td>
</tr>
<tr>
<td>Dubé et al., 2015</td>
<td>Cognitively normal participants (63, 20-70 years)</td>
<td>Sleep slow waves density and amplitude</td>
<td>Grey matter integrity</td>
<td>Higher sleep slow waves density and amplitude were associated with higher grey matter integrity in sleep slow waves related regions.</td>
</tr>
<tr>
<td>Lo et al., 2014</td>
<td>Cognitively normal participants (66, 69.5 ± 5.7 years)</td>
<td>Self-reported sleep duration</td>
<td>Longitudinal ventricles expansion rate</td>
<td>Reduced sleep duration was associated with faster annual expansion rates of the ventricles over 2 years of follow-up.</td>
</tr>
<tr>
<td>Sanchez-Espinosa et al., 2014</td>
<td>aMCI participants (21, 69.8 ± 5.5 years)</td>
<td>REM sleep duration</td>
<td>Grey matter integrity</td>
<td>Lower REM sleep duration was associated with reduced grey matter integrity in brain regions involved in early stages of AD.</td>
</tr>
<tr>
<td>Authors, Year</td>
<td>Group Description</td>
<td>Sleep Measure</td>
<td>Outcome Measure</td>
<td>Results</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
<td>--------------------------------------</td>
<td>-------------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Sexton et al., 2014</td>
<td>Cognitively normal participants (147, 20.4-84.2 years)</td>
<td>PSQI</td>
<td>Longitudinal grey matter decline</td>
<td>Worse sleep quality was associated with higher rates of grey matter atrophy over 3.5 years of follow-up.</td>
</tr>
<tr>
<td>Spira et al., 2016</td>
<td>Cognitively normal participants (122, 51-86 years)</td>
<td>Self-reported sleep duration</td>
<td>Longitudinal grey matter decline</td>
<td>Sleep durations of less or more than 7 hours were associated with higher rates of grey matter atrophy over 8 years of follow-up.</td>
</tr>
<tr>
<td>Takeuchi et al., 2018</td>
<td>Cognitively normal participants (1201, 18-27 years)</td>
<td>Self-reported sleep continuity and sleep duration</td>
<td>White matter integrity</td>
<td>Higher sleep continuity and lower sleep duration were associated with higher white matter integrity.</td>
</tr>
<tr>
<td>Van Someren et al., 2018</td>
<td>Cognitively normal participants (138, 69.1 ± 8.5 years)</td>
<td>1 week of at home actigraphic recording</td>
<td>Medial temporal lobe atrophy</td>
<td>Higher fragmentation of rest-activity circadian rhythm was associated with higher medial temporal lobe atrophy.</td>
</tr>
<tr>
<td>Zhang et al., 2014</td>
<td>Male SirT3 wild-type mice (5, 2 months)</td>
<td>Sleep restriction to 4h/day</td>
<td>Number of locus coeruleus neurons</td>
<td>Extended wakefulness was associated with a loss of neurons in the locus coeruleus.</td>
</tr>
<tr>
<td>Zhu et al., 2007</td>
<td>Male C57BL/6J mice (10, 2 months)</td>
<td>Long-term intermittent hypoxia exposure for 8 weeks, sleep duration, sleep latency</td>
<td>Number of locus coeruleus neurons.</td>
<td>Chronic sleep disruption was associated with a loss of neurons in the locus coeruleus that had long-lasting effects on sleep duration and sleep latency.</td>
</tr>
</tbody>
</table>

Abbreviations: aMCI = Amnestic mild cognitive impairment; ESS = Epworth sleepiness scale; PSQI = Pittsburgh sleep quality index; REM = Rapid eye movement.