[en] The whole transcriptome contains information about nonsense, missense, silent, in-frame and frameshift mutations, as observed at whole-exome level, as well as splicing and (allelic) gene-expression changes which are missed by DNA analysis. One important step in the analysis of gene expression data arising from RNA-seq is the detection of differential expression (DE) levels. Several methods are available and the choice is sometimes controversial. For a reliable DE analysis that reduces False Positive DE genes, and accurate estimation of gene expression levels, a good and suitable normalization approach (including correction for confounders) is mandatory. Several normalization methods have been proposed to correct for both within-sample and between-sample biases. RUV (Removing Unwanted Variation) is one of them and has the advantage to correct for batch effects including potentially unknown unwanted variation in gene expression. In this study, we present a comparison on real-life Illumina paired-end sequencing data for Estrogen-Receptor-Positive (ER+) Breast Cancer tissues versus matched controls between RUV (RUVg using in silico negative control genes) and more commonly used methods for RNA-seq data normalization, such as DESeq2, edgeR, and UQ. The set of in silico empirical negative control genes for RUVg was defined as the set of least significant DE genes obtained after a first DE analysis performed prior to RUVg correction. Box plots of relative log expression (RLE) among the samples and PCA plots show that RUVg performs well and leads to a stabilization of read count across samples with a clear clustering of biological replicates.
Research Center/Unit :
GIGA‐R - Giga‐Research - ULiège
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Debit, Ahmed ; Université de Liège - ULiège > Cancer-Human Genetics
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.