A fully partitioned Lagrangian framework for FSI problems characterized by free surfaces, large solid deformations and displacements, and strong added-mass effects
Cerquaglia, Marco Lucio; Thomas, David; Boman, Romainet al.
2019 • In Computer Methods in Applied Mechanics and Engineering, 348, p. 409-442
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Cerquaglia, Marco Lucio ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > LTAS-Mécanique numérique non linéaire
Thomas, David ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Interactions Fluide-Structure - Aérodynamique expérimentale
Boman, Romain ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Département d'aérospatiale et mécanique
Terrapon, Vincent ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Modélisation et contrôle des écoulements turbulents
Ponthot, Jean-Philippe ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > LTAS-Mécanique numérique non linéaire
Language :
English
Title :
A fully partitioned Lagrangian framework for FSI problems characterized by free surfaces, large solid deformations and displacements, and strong added-mass effects
Publication date :
2019
Journal title :
Computer Methods in Applied Mechanics and Engineering
Li, Z., Leduc, J., Nunez-Ramirez, J., Combescure, A., Marongiu, J.C., A non-intrusive partitioned approach to couple smoothed particle hydrodynamics and finite element methods for transient fluid–structure interaction problems with large interface motion. Comput. Mech. 55:4 (2015), 697–718, 10.1007/s00466-015-1131-8.
Habchi, C., Russeil, S., Bougeard, D., Harion, J.L., Lemenand, T., Ghanem, A., Valle, D.D., Peerhossaini, H., Partitioned solver for strongly coupled fluid–structure interaction. Comput. & Fluids 71 (2013), 306–319, 10.1016/j.compfluid.2012.11.004.
Dettmer, W., Perić D., A new staggered scheme for fluid–structure interaction. Internat. J. Numer. Methods Engrg. 93:1 (2013), 1–22, 10.1002/nme.4370.
Nobile, F., Vergara, C., Partitioned algorithms for fluid–structure interaction problems in haemodynamics. Milan J. Math. 80:2 (2012), 443–467, 10.1007/s00032-012-0194-7.
Wall, W.A., Genkinger, S., Ramm, E., A strong coupling partitioned approach for fluid–structure interaction with free surfaces. Comput. & Fluids 36:1 (2007), 169–183, 10.1016/j.compfluid.2005.08.007 Challenges and advances in flow simulation and modeling.
Hirt, C.W., Nichols, B.D., Volume of Fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39 (1981), 201–225.
Osher, S., Fedkiw, R., Level Set Methods and Dynamic Implicit Surfaces. 2006, Springer.
Idelsohn, S.R., Oñate, E., Del Pin, F., The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Internat. J. Numer. Methods Engrg. 61 (2004), 964–989.
Oñate, E., Idelsohn, S.R., Del Pin, F., Aubry, R., The particle finite element method. An overview. Int. J. Comput. Methods 1:2 (2004), 267–307.
Monaghan, J.J., Gingold, R.A., Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181 (1977), 375–389.
Idelsohn, S.R., Marti, J., Limache, A., Oñate, E., Unified Lagrangian formulation for elastic solids and incompressible fluids: Application to fluid–structure interaction problems via the PFEM. Comput. Methods Appl. Mech. Engrg. 197 (2008), 1762–1776.
Franci, A., Oñate, E., Carbonell, J.M., Unified Lagrangian formulation for solid and fluid mechanics and FSI problems. Comput. Methods Appl. Mech. Engrg. 298 (2016), 520–547.
Zhu, M., Scott, M.H., Improved fractional step method for simulating fluid–structure interaction using the PFEM. Internat. J. Numer. Methods Engrg. 99:12 (2014), 925–944.
Meduri, S., Cremonesi, M., Perego, U., Bettinotti, O., Kurkchubasche, A., Oancea, V., A partitioned fully explicit Lagrangian finite element method for highly nonlinear fluid–structure-interaction problems. Internat. J. Numer. Methods Engrg. 113 (2017), 43–64, 10.1002/nme.5602.
Thomas, D., Cerquaglia, M., Boman, R., Economon, T., Alonso, J., Dimitriadis, G., Terrapon, V., CUPyDO an integrated Python environment for coupled multi-physics simulations. Adv. Eng. Softw. 128 (2019), 69–85.
Franci, A., Cremonesi, M., On the effect of standard PFEM remeshing on volume conservation in free-surface fluid flow problems. Comput. Part. Mech. 4:3 (2016), 331–343.
Idelsohn, S.R., Oñate, E., To mesh or not to mesh. That is the question… Comput. Methods Appl. Mech. Engrg. 195 (2006), 4681–4696.
Cremonesi, M., Meduri, S., Perego, U., Frangi, A., An explicit Lagrangian finite element method for free-surface weakly compressible flows. Comput. Part. Mech. 4:3 (2016), 357–369, 10.1007/s40571-016-0122-7.
Idelsohn, S.R., Mier-Torrecilla, M., Oñate, E., Multi-fluid flows with the particle finite element method. Comput. Methods Appl. Mech. Engrg. 198 (2009), 2750–2767.
Idelsohn, S.R., Mier-Torrecilla, M., Nigro, N.M., Oñate, E., On the analysis of heterogeneous fluids with jumps in the viscosity using a discontinuous pressure field. Comput. Mech. 46 (2010), 115–124.
Zhang, X., Krabbenhoft, K., Pedroso, D.M., Lyamin, A.V., Sheng, D., Vicente da Silva, M., Wang, D., Particle finite element analysis of large deformation and granular flow problems. Comput. Geotech. 54 (2013), 133–142.
Cremonesi, M., Perego, U., A Lagrangian finite element approach for the simulation of water-waves induced by landslides. Comput. Struct. 89 (2011), 1086–1093.
Idelsohn, S.R., Marti, J., Souto-Iglesias, A., Oñate, E., Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM. Comput. Mech. 43:1 (2008), 125–132, 10.1007/s00466-008-0245-7.
Idelsohn, S.R., Del Pin, F., Rossi, R., Oñate, E., Fluid–structure interaction problems with strong added-mass effect. Internat. J. Numer. Methods Engrg. 80 (2009), 1261–1294.
Oñate, E., Franci, A., Carbonell, J.M., A particle finite element method for analysis of industrial forming processes. Comput. Mech. 54 (2014), 85–107.
Oñate, E., Rossi, R., Idelsohn, S.R., Butler, K.M., Melting and spread of polymers in fire with the particle finite element method. Internat. J. Numer. Methods Engrg. 81 (2010), 1046–1072.
Idelsohn, S.R., Nigro, N.M., Gimenez, J.M., Rossi, R., Marti, J.M., A fast and accurate method to solve the incompressible Navier–Stokes equations. Eng. Comput. 30:2 (2013), 197–222, 10.1108/02644401311304854.
Idelsohn, S.R., Marti, J., Becker, P., Oñate, E., Analysis of multifluid flows with large time steps using the particle finite element method. Internat. J. Numer. Methods Fluids 75:9 (2014), 621–644, 10.1002/fld.3908.
Ryzhakov, P.B., Marti, J., Idelsohn, S.R., Oñate, E., Fast fluid–structure interaction simulations using a displacement-based finite element model equipped with an explicit streamline integration prediction. Comput. Methods Appl. Mech. Engrg. 315 (2017), 1080–1097, 10.1016/j.cma.2016.12.003.
Cerquaglia, M., Deliége, G., Boman, R., Terrapon, V., Ponthot, J.P., Free-slip boundary conditions for simulating free-surface incompressible flows through the particle finite element method. Internat. J. Numer. Methods Engrg. 110:10 (2017), 921–946, 10.1002/nme.5439.
Metafor, A nonlinear finite element code, University of Liège. http://metafor.ltas.ulg.ac.be/.
Belytschko, T., Liu, W.K., Moran, B., Nonlinear Finite Elements for Continua and Structures. 2001, Wiley.
Babuška, I., Narasimhan, R., The Babuška–Brezzi condition and the patch test: an example. Comput. Methods Appl. Mech. Engrg. 140 (1997), 183–199.
Brezzi, F., Fortin, M., Mixed and Hybrid Finite Element Method. 1991, Springer, Berlin.
Tezduyar, T.E., Mittal, S., Ray, S.E., Shih, R., Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput. Methods Appl. Mech. Engrg. 95 (1992), 221–242.
Cremonesi, M., Frangi, A., Perego, U., A Lagrangian finite element approach for the analysis of fluid–structure interaction problems. Internat. J. Numer. Methods Engrg. 84:5 (2010), 610–630.
Idelsohn, S.R., Oñate, E., The challenge of mass conservation in the solution of free-surface flows with the fractional-step method: Problems and solutions. Int. J. Numer. Methods Biomed. Eng. 26 (2010), 1313–1330.
Ryzhakov, P., Oñate, E., Rossi, R., Idelsohn, S.R., Improving mass conservation in simulation of incompressible flows. Internat. J. Numer. Methods Engrg. 90 (2012), 1435–1451.
Ponthot, J.P., Unified stress update algorithms for the numerical simulation of large deformation elasto-plastic and elasto-viscoplastic processes. Int. J. Plast. 18:1 (2002), 91–126, 10.1016/S0749-6419(00)00097-8.
Chung, J., Hulbert, G.M., A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-α method. J. Appl. Mech. 60:2 (1993), 371–375.
Malkus, D.S., Hughes, T.J., Mixed finite element methods — reduced and selective integration techniques: A unification of concepts. Comput. Methods Appl. Mech. Engrg. 15:1 (1978), 63–81, 10.1016/0045-7825(78)90005-1.
Simo, J.C., Rifai, M.S., A class of mixed assumed strain methods and the method of incompatible modes. Internat. J. Numer. Methods Engrg. 29:8 (1990), 1595–1638, 10.1002/nme.1620290802.
Bui, Q., Papeleux, L., Ponthot, J., Numerical simulation of springback using enhanced assumed strain elements. J. Mater Process. Technol. 153–154 (2004), 314–318, 10.1016/j.jmatprotec.2004.04.342.
Adam, L., Ponthot, J.P., Thermomechanical modeling of metals at finite strains: First and mixed order finite elements. Int. J. Solids Struct. 42:21 (2005), 5615–5655, 10.1016/j.ijsolstr.2005.03.020.
Donea, J., Huerta, A., Ponthot, J.P., Rodríguez-Ferran, A., Arbitrary Lagrangian–Eulerian methods. Encyclopedia of Computational Mechanics, 2004, John Wiley & Sons Ch. 14.
Boman, R., Ponthot, J.P., Efficient ALE mesh management for 3D quasi-Eulerian problems. Internat. J. Numer. Methods Engrg. 92:10 (2012), 857–890, 10.1002/nme.4361.
Koeune, R., Ponthot, J.P., A one phase thermomechanical model for the numerical simulation of semi-solid material behavior. Application to thixoforming. Int. J. Plast. 58 (2014), 120–153, 10.1016/j.ijplas.2014.01.004.
Jeunechamps, P.P., Ponthot, J.P., An efficient 3D implicit approach for the thermomechanical simulation of elastic-viscoplastic materials submitted to high strain rate and damage. Internat. J. Numer. Methods Engrg. 94:10 (2013), 920–960, 10.1002/nme.4489.
Mengoni, M., Ponthot, J.P., Isotropic continuum damage/repair model for alveolar bone remodeling. J. Comput. Appl. Math. 234:7 (2010), 2036–2045, 10.1016/j.cam.2009.08.061.
Boman, R., Ponthot, J.P., Finite element simulation of lubricated contact in rolling using the arbitrary Lagrangian–Eulerian formulation. Comput. Methods Appl. Mech. Engrg. 193:39 (2004), 4323–4353, 10.1016/j.cma.2004.01.034.
Farhat, C., Lesoinne, M., Tallec, P.L., Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity. Comput. Methods Appl. Mech. Engrg. 157:1 (1998), 95–114, 10.1016/S0045-7825(97)00216-8.
Causin, P., Gerbeau, J., Nobile, F., Added-mass effect in the design of partitioned algorithms for fluid–structure problems. Comput. Methods Appl. Mech. Engrg. 194:42–44 (2005), 4506–4527, 10.1016/j.cma.2004.12.005.
Degroote, J., Bathe, K.J., Vierendeels, J., Performance of a new partitioned procedure versus a monolithic procedure in fluid–structure interaction. Comput. Struct. 87:11–12 (2009), 793–801, 10.1016/j.compstruc.2008.11.013.
Vierendeels, J., Lanoye, L., Degroote, J., Verdonck, P., Implicit coupling of partitioned fluid–structure interaction problems with reduced order models. Comput. Struct. 85:11–14 (2007), 970–976, 10.1016/j.compstruc.2006.11.006.
Bungartz, H.J., Lindner, F., Gatzhammer, B., Mehl, M., Scheufele, K., Shukaev, A., Uekermann, B., preCICE — a fully parallel library for multi-physics surface coupling. Comput. & Fluids 141 (2016), 250–258, 10.1016/j.compfluid.2016.04.003 Advances in fluid–structure interaction.
Beckert, A., Wendland, H., Multivariate interpolation for fluid–structure-interaction problems using radial basis functions. Aerosp. Sci. Technol. 5:2 (2001), 125–134, 10.1016/S1270-9638(00)01087-7.
de Boer, A., van Zuijlen, A., Bijl, H., Review of coupling methods for non-matching meshes. Comput. Methods Appl. Mech. Engrg. 196:8 (2007), 1515–1525, 10.1016/j.cma.2006.03.017 Domain decomposition methods: recent advances and new challenges in engineering.
Degroote, J., Souto-Iglesias, A., Paepegem, W.V., Annerel, S., Bruggeman, P., Vierendeels, J., Partitioned simulation of the interaction between an elastic structure and free surface flow. Comput. Methods Appl. Mech. Engrg. 199:33–36 (2010), 2085–2098, 10.1016/j.cma.2010.02.019.
Joosten, M.M., Dettmer, W.G., Perić D., Analysis of the block Gauss–Seidel solution procedure for a strongly coupled model problem with reference to fluid–structure interaction. Internat. J. Numer. Methods Engrg. 78:7 (2009), 757–778, 10.1002/nme.2503.
Wood, C., Gil, A., Hassan, O., Bonet, J., Partitioned block-Gauss–Seidel coupling for dynamic fluid–structure interaction. Comput. Struct. 88:23–24 (2010), 1367–1382, 10.1016/j.compstruc.2008.08.005 Special issue: Association of Computational Mechanics — United Kingdom.
Rossi, R., Oate, E., Analysis of some partitioned algorithms for fluid–structure interaction. Eng. Comput. 27:1 (2010), 20–56, 10.1108/02644401011008513.
Irons, B.M., Tuck, R.C., A version of the Aitken accelerator for computer iteration. Internat. J. Numer. Methods Engrg. 1:3 (1969), 275–277, 10.1002/nme.1620010306.
Degroote, J., Bruggeman, P., Haelterman, R., Vierendeels, J., Stability of a coupling technique for partitioned solvers in FSI applications. Comput. Struct. 86:23–24 (2008), 2224–2234, 10.1016/j.compstruc.2008.05.005.
Haelterman, R., Bogaers, A., Scheufele, K., Uekermann, B., Mehl, M., Improving the performance of the partitioned QN-ILS procedure for fluid–structure interaction problems: Filtering. Comput. Struct. 171:Supplement C (2016), 9–17, 10.1016/j.compstruc.2016.04.001.
Förster, C., Wall, W.A., Ramm, E., Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Comput. Methods Appl. Mech. Engrg. 196:7 (2007), 1278–1293, 10.1016/j.cma.2006.09.002.
Degroote, J., Annerel, S., Vierendeels, J., Stability analysis of Gauss–Seidel iterations in a partitioned simulation of fluid–structure interaction. Comput. Struct. 88:5–6 (2010), 263–271, 10.1016/j.compstruc.2009.09.003.
Olivier, M., Morissette, J.F., Dumas, G., A fluid–structure interaction solver for nano-air-vehicle flapping wings. Fluid Dynamics and Co-located Conferences, 2009, American Institute of Aeronautics and Astronautics, 10.2514/6.2009-3676.
Dettmer, W., Perić D., A computational framework for fluid–structure interaction: Finite element formulation and applications. Comput. Methods Appl. Mech. Engrg. 195:41–43 (2006), 5754–5779, 10.1016/j.cma.2005.10.019 John H. Argyris memorial issue. Part II.
F. Palacios, M. Colonno, A. Aranake, A. Campos, S. Copeland, T. Economon, A. Lonkar, T. Lukaczyk, T. Taylor, J. Alonso, Stanford University Unstructured (SU2): An open-source integrated computational environment for multi-physics simulation and design, in: AIAA 51st Aerospace Sciences Meeting, Grapevine, TX, 7–10 January, 2013. http://dx.doi.org/10.2514/6.2013-287.
Papanastasiou, T.C., Malamataris, N., Ellwood, K., A new outflow boundary condition. Internat. J. Numer. Methods Fluids 14:5 (1992), 587–608.
Griffiths, D.F., The ‘no boundary condition’ outflow boundary condition. Internat. J. Numer. Methods Fluids 24:4 (1997), 393–411.
Renardy, M., Imposing ‘no’ boundary condition at outflow: Why does it work?. Internat. J. Numer. Methods Fluids 24:4 (1997), 413–417.
Walhorn, E., Kölke, A., Hübner, B., Dinkler, D., Fluid–structure coupling within a monolithic model involving free surface flows. Comput. Struct. 83 (2005), 2100–2111.
Liu, M., Shao, J., Li, H., Numerical simulation of hydro-elastic problems with smoothed particle hydrodynamics method. J. Hydrodynamics 25:5 (2013), 673–682.
Ryzhakov, P.B., Rossi, R., Idelsohn, S.R., Oate, E., A monolithic Lagrangian approach for fluid–structure interaction problems. Comput. Mech. 46 (2010), 883–899.
Rafiee, A., Thiagarajan, K.P., An SPH projection method for simulating fluid-hypoelastic structure interaction. Comput. Methods Appl. Mech. Engrg. 198:33–36 (2009), 2785–2795, 10.1016/j.cma.2009.04.001.
S. Meduri, M. Cremonesi, U. Perego, A fully explicit fluid-structure interaction approach based on the PFEM, in: VII International Conference on Computational Methods for Coupled Problems in Science and Engineering, 2017, pp. 299–306.
Antoci, C., Gallati, M., Sibilla, S., Numerical simulation of fluid–structure interaction by SPH. Comput. Struct. 85:11–14 (2007), 879–890, 10.1016/j.compstruc.2007.01.002.
Yang, Q., Jones, V., McCue, L., Free-surface flow interactions with deformable structures using an SPH-FEM model. Ocean Eng. 55:Supplement C (2012), 136–147, 10.1016/j.oceaneng.2012.06.031.
Antoci, C., Simulazione numerica dell'interazione fluido-struttura con la tecnica SPH. (Ph.D. thesis), 2006, Università degli studi di Pavia.
Hesch, C., Gil, A., Carreo, A.A., Bonet, J., On continuum immersed strategies for fluid–structure interaction. Comput. Methods Appl. Mech. Engrg. 247–248 (2012), 51–64, 10.1016/j.cma.2012.07.021.
Gil, A., Carreo, A.A., Bonet, J., Hassan, O., The immersed structural potential method for haemodynamic applications. J. Comput. Phys. 229:22 (2010), 8613–8641, 10.1016/j.jcp.2010.08.005.
Wang, X., Liu, W.K., Extended immersed boundary method using FEM and RKPM. Comput. Methods Appl. Mech. Engrg. 193:12 (2004), 1305–1321, 10.1016/j.cma.2003.12.024 Meshfree methods: Recent advances and new applications.