CMEMS. 2014. Technical annex to the delegation agreement with Mercator Ocean for the implementation of the Copernicus Marine Environment Monitoring Service (CMEMS). www.copernicus.eu/sites/default/files/library/CMEM_TechnicalAnnex_PUBLIC.docx.pdf
CMEMS. 2016. High level service evolution strategy, a document prepared by Mercator Ocean with the support of the CMEMS STAC
Hernandez F, Blockley E, Brassington GB, Davidson F, Divakaran P, Drévillon M, Ishizaki S, Garcia-Sotillo M, Hogan PJ, Lagemaa P, et al. 2015. Recent progress in performance evaluations and near real-time assessment of operational ocean products. J Oper Oceanogr. 8(2):s221–s238. doi:10.1080/1755876X.2015.1050282
IPCC. 2013. Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change [Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, editors]. Cambridge: Cambridge University Press, 1535. doi:10.1017/CBO9781107415324
Le Quéré C, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, Peters GP, Manning AC, Boden TA, Tans PP, Houghton RA, et al. 2016. Global carbon budget 2016. Earth Syst Sci Data. 8(2):605–649. doi: 10.5194/essd-8-605-2016
Le Traon PY, et al. 2017. The Copernicus marine environmental monitoring service: main scientific achievements and future prospects. Mercator Ocean J. 56. https://www.mercator-ocean.fr/wp-content/uploads/2017/06/Journal56_SpecialV6.pdf
OECD. 2016. The ocean economy in 2030. Paris: OECD Publishing. doi:10.1787/9789264251724-en
Turpin V, Remy E, Le Traon PY., 2016. How essential are Argo observations to constrain a global ocean data assimilation system? Ocean Sci., 12, 257–274. doi: 10.5194/os-12-257-2016
UN. 2017. Report of the United Nations conference to support the implementation of sustainable development goal 14: Conserve and sustainably use the oceans, seas and marine resources for sustainable development (Advance unedited version). https://sustainabledevelopment.un.org/content/documents/15662FINAL_15_June_2017_RepoRe_Goal_14.pdf
von Schuckmann K, Le Traon PY, Alvarez-Fanjul E, Axell L, Balmaseda M, Breivik LA, Brewin RJW, Bricaud C, Drevillon M, Drillet Y, et al. 2016. The Copernicus Marine Environment Monitoring Service Ocean State report. J Oper Oceanogr. 9:s235–s320. doi:10.1080/1755876X.2016.1273446
Armour KC, Marshall J, Scott JR, Donohoe A, Newsom ER., 2016. Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat Geosci. 9(7):549–554. doi: 10.1038/ngeo2731
Assmy P, Fernández-Méndez M, Duarte P, Meyer A, Randelhoff A, Mundy CJ, Olsen LM, Kauko HM, Bailey A, Chieric M, et al. 2017. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice. Scientific Reports, 7, 40850. doi: 10.1038/srep40850
Beckley BD, Callahan PS, Hancock III, DW, Mitchum GT, Ray RD., 2017. On the “cal mode” correction to TOPEX satellite altimetry and its effect on the global mean sea level time series. J Geophys Res-Oceans. 122:8371–8384. doi:10.1002/2017JC013090
Boyer T, Domingues CM, Good SA, Johnson GC, Lyman JM, Ishii M, Gourestki V, Willis JK, Antonov J, Wijffels S, et al. 2016. Sensitivity of global upper-ocean heat content estimates to mapping methods, XBT bias corrections, and baseline climatologies. J Clim. 29. doi:10.1175/JCLI-D-15-0801.1
Carmack EC, Yamamoto-Kawai M, Haine TWN, Bacon S, Bluhm BA, Lique C, Melling H, Polyakov IV, Straneo F, Timmermans ML, Williams WJ., 2016. Freshwater and its role in the Arctic marine system: sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans. J Geophys Res Biogeosci. 121:675–717. doi: 10.1002/2015JG003140
Curry R, Dickson B, Yashayaev I., 2003. A change in the freshwater balance of the Atlantic Ocean over the past four decades. Nature. 426:826–829. doi:10.1038/nature02206
Dai A, Qian T, Trenberth KE., 2009. Changes in continental freshwater discharge from 1948 to 2004. J Clim. 22:2773–2792. doi: 10.1175/2008JCLI2592.1
Dettinger MD, Diaz HF., 2000. Global characteristics of stream flow seasonality and variability. J Hydrometeor. 1:289–310. doi: 10.1175/1525-7541(2000)001<0289:GCOSFS>2.0.CO;2
Dieng HB, Cazenave A, Meyssignac B, von Schuckmann K, Palanisamy H., 2017. Sea and land surface temperatures, ocean heat content, Earth’s energy imbalance and net radiative forcing over the recent years. Int J Climatol. 37:218–229. doi:10.1002/joc.4996
Durack PJ., 2015. Ocean salinity and the global water cycle. Oceanography. 28(1):20–31. doi: 10.5670/oceanog.2015.03
Durack PJ, Lee T, Vinogradova NT, Stammer D., 2016. Keeping the lights on for global ocean salinity observation. Nat Clim Chang. 6:228–231. doi:10.1038/nclimate2946
Durack PJ, Wijffels SE, Gleckler PJ., 2014. Long-term sea-level change revisited: the role of salinity. Environ Res Lett 9:114017. doi:10.1088/1748-9326/9/11/114017
England MH, McGregor S, Spence JP, Meehl GA, Timmermann A, Cai W, Gupta AS, McPhaden MJ, Purich A, Santoso A., 2014. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Change. 4(3):222–227. doi:10.1038/nclimate2106
Han W, Meehl GA, Stammer D, Hu A, Hamlington B, Kenigson J, Palanisamy H, Thompson P., 2017. Spatial patterns of sea level variability associated with natural internal climate modes. Surv Geophys. 38:217–250. doi:10.1007/s10712-016-9386-y
Horvat C, Jones DR, Iams S, Schroeder D, Flocco D, Feltham D., 2017. The frequency and extent of sub-ice phytoplankton blooms in the Arctic Ocean. Sci Adv. 3:e1601191. doi: 10.1126/sciadv.1601191
IFSOO, 2012. 2012. A framework for ocean observing. By the task team for an integrated framework for sustained ocean observing, UNESCO 2012, IC/INF-1284. doi:10.5270/OceanObs09-FOO
IPCC 5th Assessment Report. 2013. The physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergouvernmental Panel on Climate Change
Kuhlbrodt T, Griesel A, Montoya M, Levermann A, Hofmann M, Rahmstorf S., 2007. On the driving processes of the Atlantic meridional overturning circulation. Rev Geophys. 45(2):RG2001. doi: 10.1029/2004RG000166
Legeais J-F, von Schuckmann K, Dagneaux Q, Melet A, Meyssignac B, Bonaduce A, Ablain M, Pérez Gomez B., 2016. Sea level. In von Schukmann et al., 2016. The Copernicus Marine Environment Monitoring Service Ocean State Report. J Oper Oceanogr. 9(sup2): s235–s320. doi:10.1080/1755876X.2016.1273446
Lenoir S, Beaugrand G, Lecuyer E., 2011. Modelled spatial distribution of marine fish and projected modifications in the North Atlantic Ocean. Global Change Biol. 17(1):115–129. doi:10.1111/j.1365-2486.2010.02229.x
Le Quéré C, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, Korsbakken JI, Peters GP, Manning AC, Boden TA, Tans PP, et al. 2016. Global carbon budget 2016. Earth Syst Sci Data. 8(2):605–649. doi: 10.5194/essd-8-605-2016
Llovel W, Lee T., 2015. Importance and origin of halosteric contribution to sea level change in the southeast Indian Ocean during 2005–2013. Geophys Res Lett. 42(4):1148–1157. doi: 10.1002/2014GL062611
Lüthi D, Le Floch M, Bereiter B, Blunier T, Barnola JM, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, et al. 2008. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature. 453(7193):379–382. doi: 10.1038/nature06949
O’Kane TJ, Monselesan DP, Maes C., 2016. On the stability and spatiotemporal variance distribution of salinity in the upper ocean. J Geophys Res Oceans. 121(6):4128–4148. doi: 10.1002/2015JC011523
Penduff T, Juza M, Barnier B, Zika J, Dewar WK, Treguier AM, Molines JM, Audiffren N., 2011. Sea level expression of intrinsic and forced ocean variabilities at interannual time scales. J Clim. 24(21):5652–5670. doi: 10.1175/JCLI-D-11-00077.1
Riser SC, Freeland HJ, Roemmich D, Wijffels S, Troisi A, Belbéoch M, Gilbert D, Xu J, Pouliquen S, Thresher A, et al. 2016. Fifteen years of ocean observations with the global Argo array. Nat Clim Chang. 6(2):145–153. doi: 10.1038/nclimate2872
Robinson IS., 2004. Measuring the oceans from space: the principles and methods of satellite oceanography. Chichester: Springer Praxis Books
Roemmich D, Church J, Gilson J, Monselesan D, Sutton P, Wijffels S., 2015. Unabated planetary warming and its ocean structure since 2006. Nat Clim Chang. 5:240–245. doi:10.1038/NCLIMATE2513
Sérazin G, Penduff T, Grégorio S, Barnier B, Molines JM, Terray L., 2015. Intrinsic variability of sea level from global ocean simulations: spatiotemporal scales. J Clim. 28(10):4279–4292. doi: 10.1175/JCLI-D-14-00554.1
Sprintall J, Gordon AL, Koch-Larrouy A, Lee T, Potemra JT, Kandaga Pujiana K, Wijffels SE., 2014. The Indonesian seas and their role in the coupled ocean–climate system. Nat Geosci. 7:487–492. doi:10.1038/ngeo2188
Trenberth KE, Fasullo JT, Mackaro J., 2011. Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J Clim. 24:4907–4924. doi:10.1175/2011JCLI4171.1
Vargas-Hernandez JM, Wijffels S, Meyers G, Holbrook NJ., 2015. Slow westward movement of salinity anomalies across the tropical South Indian Ocean. J Geophys Res Oceans. 120(8):5436–5456. doi: 10.1002/2015JC010933
Ward PJ, Beets W, Bouwer LM, Aerts CJCH, Renssen H., 2010. Sensitivity of river discharge to ENSO. Geophys Res Lett. 37(12):L12402. doi: 10.1029/2010GL043215
Ward PJ, Eisner S, Flörke M, Dettinger MD, Kummu M., 2014a. Annual flood sensitivities to El Niño–Southern Oscillation at the global scale. Hydrol Earth Syst Sci. 18:47–66. doi: 10.5194/hess-18-47-2014
Ward PJ, Jongman B, Kummu M, Dettinger MD, Weiland FCS, Winsemius HC., 2014b. Strong influence of El Niño Southern Oscillation onflood risk around the world Proc. Natl Acad Sci., USA. 111:5659–5664
Yang H, Liu J, Lohmann G, Shi X, Hu Y, Chen X., 2016. Ocean-atmosphere dynamics changes associated with prominent ocean surface turbulent heat fluxes trends during 1958–2013. Ocean Dynam. 66:353–365. doi:10.1007/s10236-016-0925-3
Yu L, Jin X, Josey SA, Lee T, Kumar A, Wen C, Xue Y., 2017. The global ocean water cycle in atmospheric reanalysis, satellite, and ocean salinity. J Clim. 30(10):3829–3852. doi:10.1175/JCLI-D-16-0479.1
Abraham JP, Baringer M, Bindoff NL, Boyer T, Cheng LJ, Church JA, Conroy JL, Domingues CM, Fasullo JT, Gilson J, et al. 2013. Monitoring systems of global ocean heat content and the implications for climate change, a review. Rev Geophys. 51:450–483. doi:10.1002/rog.20022
Buongiorno Nardelli B, Tronconi C, Pisano A, Santoleri R., 2013. High and ultra-high resolution processing of satellite Sea surface temperature data over Southern European Seas in the framework of MyOcean project. Remote Sens Environ. 129:1–16. doi:10.1016/j.rse.2012.10.012
Donlon CJ, Martin M, Stark J, Roberts-Jones J, Fiedler E, Wimmer W., 2012. The operational sea surface temperature and sea ice analysis (OSTIA) system. Remote Sens Environ. 116:140–158. ISSN 0034-4257. doi:10.1016/j.rse.2010.10.017
Droghei R, Buongiorno Nardelli B, Santoleri R., 2016. Combining in-situ and satellite observations to retrieve salinity and density at the ocean surface. J Atmos Ocean Technol. 33:1211–1223. doi:10.1175/JTECH-D-15-0194.1
Droghei R, Buongiorno Nardelli B, Santoleri R., 2018. A new global sea surface salinity and density dataset from multivariate observations (1993–2016). Front Mar Sci. 5(March):1–13. doi:10.3389/fmars.2018.00084
Escudier P, Couhert A, Mercier F, Mallet A, Thibaut P, Tran N, Amarouche L, Picard B, Carrère L, Dibarboure G, et al. 2017. Satellite radar altimetry: principle, geophysical correction and orbit, accuracy and precision. In: Stammer D, Cazenave A, guest editors. CRC Book on satellite altimetry
Kennedy J, Dunn R, McCarthy M, Titchner H, Morice C., 2017. Global and regional climate in 2016. Weather. 72:219–225. doi:10.1002/wea.3042
Liang Y, Chou C, Yu J, Lo M., 2016. Mapping the locations of asymmetric and symmetric discharge responses in global rivers to the two types of El Niño. Environ Res Lett. 11(4). doi:10.1088/1748-9326/11/4/044012
Milliman JD, Farnsworth KL, Jones PD, Xu KH, Smith LC., 2008. Climatic and anthropogenic factors affecting river discharge to the global ocean, 1951–2000. Global Planet Chang. 62(3–4):187–194. doi: 10.1016/j.gloplacha.2008.03.001
Paek H, Yu JY, Qian C., 2017. Why were the 2015/2016 and 1997/1998 extreme El Niño different? Geophys Res Lett. 44:1848–1856
Pezzulli S, Stephenson DB, Hannachi A., 2005. The variability of seasonality. J Clim. 18:71–88. doi:10.1175/JCLI-3256.1
Riser SC, Freeland HJ, Roemmich D, Wijffels S, Troisi A, Belbéoch M, Gilbert D, Xu J, Pouliquen S, Thresher A, et al. 2016. Fifteen years of ocean observations with the global Argo array. Nat Clim Chang. 6(2):145–153. doi: 10.1038/nclimate2872
Roquet H, Pisano A, Embury O., 2016. Sea surface temperature. In: von Schuckmann et al. 2016, The Copernicus marine environment monitoring service ocean state report. J Oper Ocean. 9(suppl. 2). doi:10.1080/1755876X.2016.1273446
Sen PK., 1968. Estimates of the regression coefficient based on Kendall’s tau. J Am Statist Assoc. 63:1379–1389. doi: 10.1080/01621459.1968.10480934
Shapiro GI, Aleynik DL, Mee LD., 2010. Long term trends in the sea surface temperature of the Black Sea. Ocean Sci. 6:491–501. doi:10.5194/os-6-491-2010
Ablain M, Cazenave A, Larnicol G, Balmaseda M, Cipollini P, Faugère Y, Fernandes MJ, Henry O, Johannessen JA, Knudsen P, et al. 2015. Improved sea level record over the satellite altimetry era (1993–2010) from the climate change initiative project. Ocean Sci. 11:67–82. doi:10.5194/os-11-67-2015
Ablain M, Larnicol G, Faugere Y, Cazenave A, Meyssignac B, Picot N, Benveniste J., 2012. Error characterization of altimetry measurements at climate scales. Proceedings of the ‘20 Years of Progress in Radar Altimetry’ symposium; Venice, Italy; September 24–29. In: Benveniste J, Morrow R, editors, ESA Special Publication SP-710. doi:10.5270/esa.sp-710.altimetry2012
Ablain M, Legeais JF, Prandi P, Fenoglio-Marc L, Marcos M, Dieng HB, Benveniste J, Cazenave A., 2017. Satellite altimetry-based Sea level at global and regional scales. Surv Geophys. 38:7–31. doi:10.1007/s10712-016-9389-8
Buongiorno Nardelli B, Tronconi C, Pisano A, Santoleri R., 2013. High and ultra-high resolution processing of satellite Sea surface temperature data over Southern European Seas in the framework of MyOcean project. Remote Sens Environ. 129:1–16. doi:10.1016/j.rse.2012.10.012
Chambers DP, Cazenave A, Champollion N, Dieng H, Llovel W, Forsberg R, von Schuckmann K, Wada Y., 2017. Evaluation of the global mean sea level budget between 1993 and 2014. Surv Geophys. 38:309–327. doi:10.1007/978-3-319-56490-6_14
Chen X, Zhang X, Church JA, Watson CS, King MA, Monselesan D, Legresy B, Harig C., 2017. The increasing rate of global mean sea-level rise during 1993–2014. Nature Clim Change. 7:492–495. doi:10.1038/nclimate3325
Cipollini P, Birol F, Fernandes MJ, Obligis E, Passaro M, Strub PT, Valladeau G, Vignudelli S, Wilkin J., 2017b. Satellite altimetry in coastal regions. In: Stammer D, Cazenave A, guest editors. CRC Book on satellite altimetry
Cipollini P, Calafat FM, Jevrejeva S, Melet A, Prandi P., 2017a. Monitoring sea level in the coastal zone with satellite altimetry and tide gauges. Sur Geophys. 38:35–59. doi:10.1007/978-3-319-56490-6_3
Couhert A, Cerri L, Legeais JF, Ablain M, Zelensky N, Haines B, Lemoine F, Bertiger W, Desai S, Otten M., 2014. Towards the 1mm/y stability of the radial orbit error at regional scales. Adv Space Res. 55:2–23. doi:10.1016/j.asr.2014.06.041
Dieng HB, Cazenave A, Meyssignac B, von Schuckmann K, Palanisamy H., 2017. Sea and land surface temperatures, ocean heat content, Earth’s energy imbalance and net radiative forcing over the recent years. Int J Climatol. 37:218–229. doi:10.1002/joc.4996
Donlon CJ, Martin M, Stark J, Roberts-Jones J, Fiedler E, Wimmer W., 2012. The operational sea surface temperature and sea ice analysis (OSTIA) system. Remote Sens Environ. 116:140–158. ISSN 0034-4257. doi:10.1016/j.rse.2010.10.017
Durack PJ, Wijffels SE., 2010. Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J Clim. 23:4342–4362. doi:10.1175/2010JCLI3377.1
Escudier P, Couhert A, Mercier F, Mallet A, Thibaut P, Tran N, Amarouche L, Picard B, Carrère L, Dibarboure G, et al. 2017. Satellite radar altimetry: principle, geophysical correction and orbit, accuracy and precision. In: Stammer D, Cazenave A, guest editors. CRC Book on satellite altimetry
Fukumori I, Menemenlis D, Lee T., 2007. A near-uniform basin-wide sea level fluctuation of the Mediterranean Sea. J Phys Ocean. 37:338–358. doi: 10.1175/JPO3016.1
IPCC 5th Assessment Report. 2013. The physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergouvernmental Panel on Climate Change
Legeais J-F, Ablain M, Thao S., 2014. Evaluation of wet troposphere path delays from atmospheric reanalyses and radiometers and their impact on the altimeter sea level. Ocean Sci. 10:893–905. doi:10.5194/os-10-893-2014
Legeais J-F, Ablain M, Zawadzki L, Zuo H, Johannessen JA, Scharffenberg MG, Fenoglio-Marc L, Fernandes MJ, Andersen O, Rudenko S, et al. 2017. An accurate and homogeneous altimeter sea level record from the ESA climate change initiative. Earth Syst Sci Data Discuss. doi:10.5194/essd-2017-116, in review
Legeais J-F, Ablain M, Zawadzki L, Zuo H, Johannessen JA, Scharffenberg MG, Fenoglio-Marc L, Fernandes MJ, Andersen OB, Rudenko S, et al. 2018. An improved and homogeneous altimeter sea level record from the ESA Climate Change Initiative. Earth Syst Sci Data. 10:281–301. doi:10.5194/essd-10-281-2018
MacIntosh CR, Merchant CJ, von Schuckmann K., 2017. Uncertainties in steric sea level change estimation during the satellite altimeter era: concepts and practices. Surv Geophys. 38:61–89. doi:10.1007/978-3-319-56490-6_4
Melet A, Almar R, Meyssignac B., 2016. What dominates sea level at the coast: a case study for the Gulf of Guinea. Ocean Dynam. 66:623–636. doi:10.1007/s10236-016-0942-2
Meyssignac B, Piecuch CG, Merchant CJ, Racault M-F, Palanisamy H, MacIntosh C, Sathyendranath S, Brewin R., 2017. Causes of the regional variability in observed Sea level, Sea surface temperature and ocean colour over the period 1993–2011. Surv Geophys. 38:191–219. doi:10.1007/978-3-319-56490-6_9
Meyssignac B, Salas-Melia D, Becker M, Llovel W, Cazenave A., 2012. Tropical pacific spatial trend patterns in observed sea level: internal variability and/or anthropogenic signature? Clim Past. 8:787–802. doi:10.5194/cp-8-787-2012
Mohrholz V, Naumann MM, Nausch G, Krüger S, Gräwe U., 2015. Fresh oxygen for the Baltic Sea–an exceptional saline inflow after a decade of stagnation. J Mar Sys. 148:152–166. doi: 10.1016/j.jmarsys.2015.03.005
Nerem RS, Ablain M, Cazenave A, Church J, Leuliette E., 2017. A 25-year long satellite altimetry-based global mean sea level record: Closure of the sea level budget & missing components. In: Stammer D, Cazenave A, guest editors. CRC Book on satellite altimetry
Palanisamy H, Meyssignac B, Cazenave A, Delcroix T., 2015. Is anthropogenic sea level fingerprint already detectable in the Pacific Ocean? Environ Res Lett. 10(2015):084024. doi:10.1088/1748-9326/10/8/084024
Pisano A, Buongiorno Nardellia B, Tronconia C, Santoleria R., 2016. The new Mediterranean optimally interpolated pathfinder AVHRR SST dataset (1982–2012). Remote Sens Environ. 176:107–116. doi:10.1016/j.rse.2016.01.019
Peltier R., 2004. Global glacial isostasy and the surface of the ice-age earth: the ICE-5G (VM2) model and GRACE. Annu Rev Earth Planet Sci. 32:111–149. doi: 10.1146/annurev.earth.32.082503.144359
Pinardi N, Masetti E., 2000. Variability of the large scale general circulation of the Mediterranean Sea from observations and modelling: a review. Palaeogeogr Palaeocl. 158:153–173. doi:10.1016/S0031-0182(00)00048-1
Pujol M-I, Faugère Y, Taburet G, Dupuy S, Pelloquin C, Ablain M, Picot N., 2016. DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20 years. Ocean Sci. 12:1067–1090. doi:10.5194/os-12-1067-2016
Roberts-Jones J, Fiedler EK, Martin MJ., 2012. Daily, global, high-resolution SST and Sea Ice reanalysis for 1985–2007 using the OSTIA system. J Clim. 25:6215–6232. doi:10.1175/JCLI-D-11-00648.1
Schiermeier Q., 2015. Hunting the Gozilla El Nino. Nature. 526:490–491. doi:10.1038/526490a
Spada G., 2017. Glacial isostatic adjustment and contemporary sea level rise: an overview. Surv Geophys. 38:155–187. doi: 10.1007/978-3-319-56490-6_8
Stammer D, Cazenave A, Ponte RM, Tamisiea ME., 2013. Causes for contemporary regional sea level changes. Annu Rev Mar Sci. 5:21–46. doi:10.1146/annurev-marine-121211-172406
Tamisiea ME, Mitrovica JX., 2011. The moving boundaries of sea level change: understanding the origins of geographic variability. Oceanography. 24(2):24–39. doi: 10.5670/oceanog.2011.25
Watson CS, White NJ, Church JA, King MA, Burgette RJ, Legresy B., 2015. Unabated global mean sea-level rise over the satellite altimeter era. Nat Clim Chang. 5:565–568. doi:10.1038/NCLIMATE2635
Zawadzki L, Ablain M., 2016. Accuracy of the mean sea level continuous record with future altimetric missions: jason-3 vs. sentinel-3a. Ocean Sci. 12:9–18. doi:10.5194/os-12-9-2016
Drévillon M, Balmaseda M, Gasparin F, von Schuckmann K, Greiner E., 2016. The 2015 El Niño event, in von Schuckmann et al., the Copernicus Marine Environment Monitoring Service Ocean State report. J Oper Oceanogr. 9. doi:10.1080/1755876X.2016.1273446
Schott FA, JP, McCreary Jr. 2001. The monsoon circulation of the Indian Ocean. Prog Oceanogr. 51:1–123. doi: 10.1016/S0079-6611(01)00083-0
Tinker J, O’Dea E, Sykes P, Hyder P, Holt J, Dye S., 2016. Regional seas: north-west European shelf seas, in von schuckmann et al., the Copernicus marine environment monitoring service ocean state report. J Oper Oceanogr. 9. doi:10.1080/1755876X.2016.1273446
Chevallier M, Smith GC, Dupont F, Lemieux J-F, Forget G, Fujii Y, Hernandez F, Msadek R, Peterson KA, Storto A, et al. 2016. Intercomparison of the Arctic sea ice cover in global ocean–sea ice reanalyses from the ORA-IP project. Clim Dyn. 49:1107–1136. doi: 10.1007/s00382-016-2985-y
Ivanova N, Johannessen OM, Pedersen LT, Tonboe RT., 2014. Retrieval of Arctic Sea ice parameters by satellite passive microwave sensors: A comparison of eleven sea ice concentration algorithms. IEEE Trans Geosci Remote Sens. 52:7233–7246. doi: 10.1109/TGRS.2014.2310136
Kauker F, Kaminski T, Ricker R, Toudal-Pedersen L, Dybkjaer G, Melsheimer C, Eastwood S, Sumata H, Karcher M, Gerdes R., 2015. Seasonal sea ice predictions for the Arctic based on assimilation of remotely sensed observations. Cryosph Discuss. 9:5521–5554. doi: 10.5194/tcd-9-5521-2015
Ricker R, Hendricks S, Helm V, Skourup H, Davidson M., 2014. Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform interpretation. Cryosphere. 8:1607–1622. doi: 10.5194/tc-8-1607-2014
Samuelsen A, Breivik L-A, Raj RP, Garric G, Axell L, Olason E., 2016. 1.7 Sea ice. In: Copernicus Mar Environ Monit Serv Ocean State Report, von Schuckmann et al. [place unknown]; p. 88
Tian-Kunze X, Kaleschke L, Maaß N, Mäkynen M, Serra N, Drusch M, Krumpen T., 2014. SMOS-derived thin sea ice thickness: algorithm baseline, product specifications and initial verification. Cryosphere. 8:997–1018. doi: 10.5194/tc-8-997-2014
Uiboupin R, Axell L, Raudsepp U, Sipelgas L., 2010. Comparison of operational ice charts with satellite based ice concentration products in the Baltic Sea. 2010 IEEE/OES US/EU Balt Int Symp Balt 2010
Xie J, Counillon F, Bertino L, Tian-Kunze X, Kaleschke L., 2016. Benefits of assimilating thin sea ice thickness from SMOS into the TOPAZ system. Cryosphere. 10:2745–2761. doi: 10.5194/tc-10-2745-2016
Zygmuntowska M, Rampal P, Ivanova N, Smedsrud LH., 2014. Uncertainties in Arctic sea ice thickness and volume: New estimates and implications for trends. Cryosphere. 8:705–720. doi: 10.5194/tc-8-705-2014
Jackson T, Sathyendranath S, Mélin F., 2017. An improved optical classification scheme for the ocean colour essential climate variable and its applications. Remote Sens Environ. doi:10.1016/j.rse.2017.03.036
Longhurst AR., 2006. Ecological geography of the sea. 2nd ed. San Diego (CA): Academic Press
Müller D, Krasemann H, Brewin RJW, Brockmann C, Deschamps P-Y, Doerffer R, Fomferra N, Franz BA, Grant MG, Groom SB, et al. 2015. The ocean colour climate change initiative: I. A methodology for assessing atmospheric correction processors based on in-situ measurements. Remote Sens Environ. 162:242–256. doi: 10.1016/j.rse.2013.11.026
Sathyendranath S, Brewin RJW, Jackson T, Mélin F, Platt T., 2017. Ocean-colour products for climate-change studies: what are their ideal characteristics? Remote Sens Environ. 203:125–138. doi:10.1016/j.rse.2017.04.017
Sathyendranath S, Grant M, Brewin RJW, Brockmann C, Brotas V, Chuprin A, Doerffer R, Dowell M, Farman A, Groom S, et al., 2018. ESA Ocean Colour Climate Change Initiative (Ocean_Colour_cci): Version 3.1 Data. Centre for Environmental Data Analysis. http://catalogue.ceda.ac.uk/uuid/9c334fbe6d424a708cf3c4cf0c6a53f5
Vantrepotte V, Mélin F., 2009. Temporal variability of 10-year global Sea WiFS time-series of phytoplankton chlorophyll a concentration. ICES J Mar Sci. 66:1547–1556. doi:10.1093/icesjms/fsp107
Radenac MH, Menkès C, Vialard J, Moulin C, Dandonneau Y, Delcroix T, Dupouy C, Stoens A, Deschamps PY., 2001. Modeled and observed impacts of the 1997–1998 El Niño on nitrate and new production in the equatorial Pacific. J Geophys Res Ocean. 106(C11):26879–26898. doi: 10.1029/2000JC000546
Wang X, Christian JR, Murtugudde R, Busalacchi AJ., 2005. Ecosystem dynamics and export production in the central and eastern equatorial Pacific: a modeling study of impact of ENSO. Geophys Res Lett. 32(2):LO2608. doi: 10.1029/2004GL021538
Bakker DCE, Pfeil B, Smith K, Hankin S, Olsen A, Alin SR, Cosca C, Harasawa S, Kozyr A, Nojiri Y, et al. 2014. An update to the surface ocean CO2 atlas (SOCAT version 2). Earth Syst Sci Data. 6:69–90. doi: 10.5194/essd-6-69-2014
Ballantyne AP, Alden CB, Miller JB, Tans PP, White JWC., 2012. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature. 488(7409):70–72. doi: 10.1038/nature11299
Bauer JE, Cai WJ, Raymond PA, Bianchi TS, Hopkinson CS, Regnier PA., 2013. The changing carbon cycle of the coastal ocean. Nature. 504(7478):61–70. doi: 10.1038/nature12857
Bopp L, Resplandy L, Orr JC, Doney SC, Dunne JP, Gehlen M, Halloran P., Heinze C., Ilyina T., Séférian R., et al. 2013. Multiple stressors of ocean ecosystems in the twenty-first century: projections with CMIP5 models. Biogeosciences. 10:6225–6245. doi: 10.5194/bg-10-6225-2013
Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann, et al. 2013. Carbon and other biogeochemical cycles. In climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Chapter 6
Conway TJ, Tans PP, Waterman LS, Thoning KW, Kitzis DR, Masarie KA, Zhang N., 1994. Evidence for interannual variability of the carbon cycle from the NOAA/CMDL global air sampling network. J Geophys Res. 99(22):831–22
Cossarini G, Lazzari P, Solidoro C., 2015. Spatiotemporal variability of alkalinity in the Mediterranean Sea. Biogeosciences. 12(6):1647–1658. doi: 10.5194/bg-12-1647-2015
DeVries T, Holzer M, Primeau F., 2017. Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning. Nature. 542:215–218. doi:10.1038/nature21068
Gehlen M, Gruber N, Gangstø R, Bopp L, Oschlies A., 2011. Biogeochemical consequences of ocean acidification and feedbacks to the earth system. Ocean Acidif. 1:230–248
Jacobson AR, Mikaloff Fletcher SE, Gruber N, Sarmiento JL, Gloor M., 2007. A joint atmosphere-ocean inversion for surface fluxes of carbon dioxide: 1. methods and global-scale fluxes. Global Biogeoche Cycles. 21(1). doi:10.1029/2005GB002556
Landschützer P, Gruber N, Bakker DCE, Schuster U., 2014. Recent variability of the global ocean carbon sink. Global Biogeochem Cycle. 28(9):927–949. doi: 10.1002/2014GB004853
Le Quéré C, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, Korsbakken JI, Peters GP, Manning AC, Boden TA, Tans PP, et al. 2016. Global carbon budget 2016. Earth Syst Sci Data. 8(2):605–649. doi: 10.5194/essd-8-605-2016
Le Quéré C, Andrew RM, Friedlingstein P, Sitch S, Pongratz J, Manning AC, Korsbakken JI, Zhu D., 2017. Global Carbon Budget 2017. Earth Syst Sci Data. doi:10.5194/essd-2017-123, in review
Masarie KA, Tans PP., 1995. Extension and integration of atmospheric carbon dioxide data into a globally consistent measurement record. J Geophys Res. 100(D6):11593–11610. doi: 10.1029/95JD00859
Melaku Canu D, Ghermandi A, Nunes PALD, Cossarini C, Lazzari P, Solidoro S., 2015. Estimating the value of carbon sequestration ecosystem services in the Mediterranean Sea: an ecological economics approach. Global Environ Change. 32:87–95. doi: 10.1016/j.gloenvcha.2015.02.008
Resplandy L, Séférian R, Bopp L., 2015. Natural variability of CO2 and O2 fluxes: what can we learn from centuries-long climate models simulations? J Geophys Res Ocean. 120(1):384–404. doi: 10.1002/2014JC010463
Rödenbeck C, Bakker DC, Gruber N, Iida Y, Jacobson AR, Jones S, Landschützer P, Metzl N, Nakaoka S, Olsen A, et al. 2015. Data-based estimates of the ocean carbon sink variability–first results of the surface ocean pCO2 mapping intercomparison (SOCOM). Biogeosciences. 12:7251–7278. doi: 10.5194/bg-12-7251-2015
Roy T, Bopp L, Gehlen M, Schneider B, Cadule P, Frölicher TL, Segschneider J, Tjiputra J, Heinze C, Joos F., 2011. Regional impacts of climate change and atmospheric CO2 on future ocean carbon uptake: a multimodel linear feedback analysis. J Clim. 24(9):2300–2318. doi: 10.1175/2010JCLI3787.1
Schott FA, McCreary JP, Johnson GC., 2004. Shallow overturning circulations of the tropical-subtropical oceans. Earth Clim. 147:261–304. doi:10.1029/147GM15
Séférian R, Iudicone D, Bopp L, Roy T, Madec G., 2012. Water mass analysis of effect of climate change on air–sea CO2 fluxes: the Southern Ocean. J Clim. 25(11):3894–3908. doi: 10.1175/JCLI-D-11-00291.1
Séférian R, Ribes A, Bopp L., 2014. Detecting the anthropogenic influences on recent changes in ocean carbon uptake. Geophys Res Lett. 41(16):5968–5977. doi: 10.1002/2014GL061223
Takahashi T, Sutherland SC, Sweeney C, Poisson A, Metzl N, Tilbrook B, Bates N, Wanninkhof R, Feely RA, Sabine C, et al. 2002. Global sea–air CO2 flux based on climatological surface ocean p CO2, and seasonal biological and temperature effects. Deep Sea Res II: Topical Stud Oceanogr. 49(9):1601–1622. doi: 10.1016/S0967-0645(02)00003-6
Wanninkhof R., 1992. Relationship between wind speed and gas exchange over the ocean. J Geophys Res Ocean. 97(C5):7373–7382. doi: 10.1029/92JC00188
World Data Centre for Greenhouse Gases. 2017. [Url visited on June 2017]. http://ds.data.jma.go.jp/gmd/wdcgg/cgi-bin/wdcgg/map_search.cgi
Belmonte Rivas M, Stoffelen A, Verspeek J, Verhoef A, Neyt X, Anderson C., 2017. Cone metrics: a new tool for the intercomparison of scatterometer records. IEEE J Select Topic Appl Earth Obs Remote Sens. 10(5). doi:10.1109/JSTARS.2017.2647842
Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, et al. 2011. The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc. 137:553–597. doi:10.1002/qj.828
Sandu I, Beljaars A, Bechtold P, Mauritsen T, Balsamo G., 2013. Why is it so difficult to represent stably stratified conditions in numerical weather prediction (NWP) models? J Adv Model Earth Syst. 5:117–133. doi: 10.1002/jame.20013
Sprintall J, Gordon AL, Koch-Larrouy A, Lee T, Potemra JT, Kandaga Pujiana K, Wijffels SE., 2014. The Indonesian seas and their role in the coupled ocean–climate system. Nat Geosci. 7:487–492. doi:10.1038/ngeo2188
Stoffelen A, Aaboe S, Calvet J-C, Cotton J, De Chiara G, Figa Saldaña J, Mouche A, Portabella M, Scipal K, Wagner W., 2017b. Scientific developments and the EPS-SG scatterometer. IEEE J Select Topic Appl Earth Obs Remote Sens. 10(5). doi:10.1109/JSTARS.2017.2696424
Stoffelen A, Verspeek J, Vogelzang J, Verhoef A., 2017a. The CMOD7 geophysical model function for ASCAT and ERS wind retrievals. IEEE J Select Topic Appl Earth Obs Remote Sens. 10(5). doi:10.1109/JSTARS.2017.2681806
Verhoef A, Vogelzang J, Verspeek J, Stoffelen A., 2017a. Long-term scatterometer wind climate data records. IEEE J Select Topic Appl Earth Obs Remote Sens. 10(5): 2186–2194. doi:10.1109/JSTARS.2016.2615873
Verhoef A, Vogelzang J, Stoffelen A., 2017b. ERS L2 winds data record validation report 25 km wind products (OSI-152). Version 1.1. doi:10.15770/EUM_SAF_OSI_0009
Vogelzang J, Stoffelen A, Verhoef A, Figa-Saldana J., 2011. On the quality of high-resolution scatterometer winds. J Geophys Res. 116:C10033. doi:10.1029/2010JC006640
Wang Z, Stoffelen A, Zhao C, Vogelzang J, Verhoef A, Verspeek J, Lin M, Chen G., 2017. An SST-dependent Ku-band geophysical model function for RapidScat. J Geophys Res-Oceans. 122. doi:10.1002/2016JC012619
Wentz FJ, Ricciardulli L, Rodriguez E, Stiles BW, Bourassa MA, Long DG, Hoffman RN, Stoffelen A, Verhoef A, O'Neill LW, et al. 2017. Evaluating and extending the ocean wind climate data record. IEEE J Sel Top Appl. doi:10.1109/JSTARS.2016.2643641
Dee DP., 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Royal Meterol Soc. 137:553–597. doi:10.1002/qj.828
Dieng HB, Cazenave A, Meyssignac B, von Schuckmann K, Palanisamy H., 2017. Sea and land surface temperatures, ocean heat content, earth’s energy imbalance and net radiative forcing over the recent years. Int J Climatol. doi:10.1002/joc.4996
Doney SC, Ruckelshaus M, Emmett Duffy J, Barry JP, Chan F, English CA, Galindo HM, Grebmeier JM, Hollowed AB, Knowlton N, et al. 2012. Climate change impacts on marine ecosystems. Ann Rev Mar Sci. 4:11–37
Drijfhout S, van Oldenborgh GJ, Cimatoribus A., 2012. Is a decline of AMOC causing the warming hole above the North Atlantic in observed and modeled warming patterns? J Clim. 25(24):8373–8379
Duchez A, Eleanor F-W, Josey SA, Evans DG, Grist JP, Marsh R, McCarthy GD, Sinha B, Berry DI, Hirschi JJ-M., 2016. Drivers of exceptionally cold North Atlantic Ocean temperatures and their link to the 2015 European heat wave. Environ Res Lett. 11(7):074004. doi:10.1088/1748-9326/11/7/074004
Grist JP, Josey SA, Jacobs ZL, Marsh R, Sinha B, van Sebille E., 2016. Extreme air–sea interaction over the North Atlantic subpolar gyre during the winter of 2013–2014 and its sub-surface legacy. Clim Dyn. 46:4027–4045. doi:10.1007/s00382-015-2819-3
Hansen J, Sato M, Kharecha P, von Schuckmann K., 2011. Earth’s energy imbalance and implications. Atmos Chem Phys. 11:13421–13449. www.atmos-chem-phys.net/11/13421/2011/. doi:10.5194/acp-11-13421-2011
Kessler WS, McPhaden MJ, Weickmann KM., 1995. Forcing of intraseasonal Kelvin waves in the equatorial Pacific. J Geophys Res: Oceans. 100(C6):10613–10631
Marshall J., 2001. North Atlantic climate variability: phenomena, impacts and mechanisms. Int J Climatol. 21:1863–1898
Polyakov IV, Pnyushkov AV, Alkire MB, Ashik IM, Baumann TM, Carmack EC, Goszczko I, Guthrie J, Ivanov VV, Kanzow T, et al. 2017. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science. 356(6335):285–291. doi:10.1126/science.aai8204
Woollings T, Gregory JM, Pinto JG, Reyers M, Brayshaw DJ., 2012. Response of the North Atlantic storm track to climate change shaped by ocean–atmosphere coupling. Nat Geosci. 5(5):313–317
Section 2.1
Abraham JP, Baringer M, Bindoff NL, Boyer T, Cheng LJ, Church JA, Conroy JL, Domingues CM, Fasullo JT, Gilson J, et al. 2013. Monitoring systems of global ocean heat content and the implications for climate change, a review. Rev Geophys. 51:450–483. doi:10.1002/rog.20022
Balmaseda MA, Trenberth KE, Källén E., 2013. Distinctive climate signals in reanalysis of global ocean heat content. Geophys Res Lett. 40. doi:10.1002/grl.50382
Buckley M, Marshall J., 2016. Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: a review. Rev Geophys. 54. doi:10.1002/2015RG000493
Cazenave A, Dieng H-B, Meyssignac B, von Schuckmann K, Decharme B, Berthier E., 2014. The rate of sea level rise. Nature Geosci. doi:10.1038/NCLIMATE2159
Fratianni C, Simoncelli S, Pinardi N, Cherchi A, Grandi A, Dobricic S., 2015. Mediterranean RR 1955–2015 (Version 1) [dataset]. Copernicus Monitoring Environment Marine Service (CMEMS)
Hansen J, Kharecha P, Sato M, Masson-Delmotte V, Ackerman F, Beerling D, Hearty PJ, Hoegh-Guldberg O, Hsu S-L, Parmesan C, et al. 2013. Scientific prescription to avoid dangerous climate change to protect young people. Future generations, and nature. Plos One. 8:e81648. doi:10.1371/journal.pone.0081648
Hansen J, Sato M, Kharecha P, von Schuckmann K., 2011. Earth’s energy imbalance and implications. Atmos Chem Phys 11:13421–13449. www.atmos-chem-phys.net/11/13421/2011/. doi:10.5194/acp-11-13421-2011
IPCC 5th Assessment Report. 2013. The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergouvernmental Panel on Climate Change
Levitus S, Antonov JI, Boyer TP, Baranova OK, Garcia HE, Locarnini RA, Mishonov AV, Reagan JR, Seidov D, Yarosh ES, Zweng MM, et al. 2012. World ocean heat content and thermosteric sealevel change (0–2000 m), 1955–2010. Geophys Res Lett 39:L10603. doi:10.1029/2012GL051106
Loeb GN, Lyman JM, Johnson GC, Allan RP, Doelling DR, Wong T, Soden BJ, Stephens GL., 2012. Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nat Geosci. 5:110–113
Loeb NG, Wielicki BA, Doelling DR, Smith GL, Keyes DF, Kato S, Manalo-Smith N, Wong T., 2009. Toward optimal closure of the earth’s top-of-atmosphere radiation budget. J Clim. 22(3):748–766
Mayer M, Haimberger L, Balmaseda MA., 2014. On the energy exchange between tropical ocean basins related to ENSO. J Clim. 27(17):6393–6403
Mayer M, Haimberger L, Pietschnig M, Storto A., 2016. Facets of Arctic energy accumulation based on observations and reanalyses 2000–2015. Geophys Res Lett. 43(19):10420–10429. doi:10.1002/2016GL070557
Purkey SG, Johnson GC., 2010. Warming of global abyssal and deep southern ocean waters between the 1990s and 2000s: contributions to global heat and sea level rise budgets. J Clim. 23. doi:10.1175/2010JCLI3682.1
Riser SC, Freeland HJ, Roemmich D, Wijffels S, Troisi A, Belbéoch M, Gilbert D, Xu J, Pouliquen S, Thresher A, et al. 2016. Fifteen years of ocean observations with the global Argo array. Nat Clim Change. doi:10.1038/NCLIMATE2872
Roemmich D, Church J, Gilson J, Monselesan D, Sutton P, Wijffels S., 2015. Unabated planetary warming and its ocean structure since 2006. Nat Clim Change. doi:10.1038/NCLIMATE2513
Simoncelli S, Fratianni C, Pinardi N, Grandi A, Drudi M, Oddo P, Dobricic S., 2014. Mediterranean Sea physical reanalysis (MEDREA 1987–2015) (Version 1) [dataset]. Copernicus Monitoring Environment Marine Service (CMEMS)
Trenberth KE, Fasullo JT, von Schuckmann K, Cheng L., 2016. Insights into earth’s energy imbalance from multiple sources. J Clim. doi:10.1175/JCLI-D-16-0339.1
von Schuckmann K, Cazenave A, Chambers D, Hansen J, Josey S, Kosaka Y, Loeb N, Mathieu P-P, Meyssignac B, Palmer M, et al. 2016a. An imperative to monitor Earth’s energy imbalance. Nat Clime Change. 6:138–144. doi:10.1038/nclimate2876
von Schuckmann K, Le Traon P-Y., 2011. How well can we derive global ocean indices from Argo data? Ocean Sci. 7:783–791. www.ocean-sci.net/7/783/20
von Schuckmann K, Le Traon P-Y, Alvarez-Fanjul, E, Axell, L, Balmaseda, M, Breivik, L-A, Brewin, RJW, Bricaud, C, Drevillon, M, Drillet, Y, et al. 2016b. The CMEMS ocean state report. J Oper Oceanogr. 9. doi:10.1080/1755876X.2016.1273446
Section 2.2
Boening C, Willis JK, Landerer FW, Nerem RS, Fasullo J., 2012. The 2011 La Niña: so strong, the oceans fell. Geophys Res Lett. 39:L19602. doi:10.1029/2012GL053055
Chambers DP, Bonin JA., 2012. Evaluation of release-05 GRACE time-variable gravity coefficients over the ocean. Ocean Sci. 8:859–868. doi:10.5194/os-8-859-2012
Chambers DP, Cazenave A, Champollion N, Dieng H, Llovel W, Forsberg R, von Schuckmann K, Wada Y., 2016. Evaluation of the global mean sea level budget between 1993 and 2014. Clim Dyn. 38(1):309–327. doi:10.1007/s10712-016-9381-3
Dieng HB, Cazenave A, Meyssignac B, von Schuckmann K, Palanisamy H., 2017. Sea and land surface temperatures, ocean heat content, Earth’s energy imbalance and net radiative forcing over the recent years. Int J Climatol. doi:10.1002/joc.4996
Durack PJ, Wijffels SE, Gleckler PJ., 2014. Long-term sea level change revisited: the role of salinity. Environ Res Lett. 9:114017. doi:10.1088/1748-9326/9/11/114017
IPCC 5th Assessment Report. 2013. The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
Johnson GC, Chambers DP., 2013. Ocean bottom pressure seasonal cycles and decadal trends from GRACE release-05: ocean circulation implications. J Geophys Res Oceans. 118:4228–4240. doi:10.1002/jgrc.20307
Leuliette EW, Miller L., 2009. Closing the sea level rise budget with altimetry, Argo, and GRACE. Geophys Res Lett. 36:L04608. doi:10.1029/2008GL036010
Lowe JA, Gregory JM., 2006. Understanding projections of sea level rise in a Hadley centre coupled climate model. J Geophys Res. 111:C11014. doi:10.1029/2005JC003421
Macintosh CR, Merchant CJ, von Schuckmann K., 2016. Uncertainties in steric sea level change estimation during the altimeter era: concepts and practices. Clim Dyn. 38(1):59–87. doi:10.1007/s10712-016-9387-x
Rietbroek R, Brunnabenda S-E, Ju K, Schröter J, Dahle C., 2016. Revisiting the contemporary sea-level budget on global and regional scales. PNAS. doi:10.1073/pnas.1519132113
Stammer D, Cazenave A, Ponte RM, Tamisiea ME., 2013. Causes for contemporary regional sea level changes. Annu Rev Mar Sci. 5. doi:10.1146/annurev-marine-121211-172406
Storto A, Masina S, Balmaseda M, Guinehut S, Xue Y, Szekely T, Fukumori I, Forget G, Chang Y-S, Good SA, et al. 2015. Steric sea level variability (1993–2010) in an ensemble of ocean reanalyses and objective analyses. Clim Dyn. 1–21. doi:10.1007/s00382-015-2554-9
Tomczak M, Godfrey JS., 1994. Regional oceanography: an introduction. New York: Pergamon. p. 21–24
von Schuckmann K, Palmer MD, Trenberth KE, Cazenave A, Chambers D, Champollion N, Hansen J, Josey SA, Loeb N, Mathieu P-P, et al. 2016a. An imperative to monitor earth’s energy imbalance. Nat Clim Change. 6:138–144. doi:10.1038/nclimate2876
von Schuckmann K, Sallée J-B, Chambers D, Le Traon P-Y, Cabanes C, Gaillard F, Speich S, Hamon M., 2014. Consistency of the current global ocean observing systems from an Argo perspective. Ocean Sci. 10:547–557. www.ocean-sci.net/10/547/2014/. doi:10.5194/os-10-547-2014
Willis JK, Chambers DP, Nerem RS., 2008. Assessing the globally averaged sea level budget on seasonal to interannual timescales. J Geophys Res. 113:C06015. doi:10.1029/2007JC004517
Section 2.3
Bricaud C, Drillet Y, Garric G., 2016. Ocean mass and heat transport. In CMEMS ocean state report. J Oper Oceanogr. 9. doi:10.1080/1755876X.2016.1273446
Colin de Verdière A, Ollitrault M., 2016. A direct determination of the world ocean barotropic circulation. J Phys Oceanogr. 46:255–273. doi:10.1175/JPO-D-15-0046.1
Crosnier L, Barnier B, Treguier AM., 2001. Aliasing inertial oscillations in a 1/6° Atlantic circulation model: impact on the mean meridional heat transport. Ocean Model. 3(1-2):21–31. doi:10.1016/S1463-5003(00)00015-9
Cunningham SA, Alderson SG, King BA, Brandon MA., 2003. Transport and variability of the Antarctic circumpolar current in drake passage. J Geophys Res. 108(C5):854. doi:10.1029/2001JC001147
Donohue KA, Tracey KL, Watts KL, Chidichimo MP, Chereskin TK., 2016. Mean Antarctic circumpolar current transport measured in drake passage. Geophys Res Lett. 43(11):11760–11767. doi:10.1002/2016GL070319
Ganachaud A, Wunsch C., 2000. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature. 408:453–457
Ganachaud A, Wunsch C., 2003. Large-scale ocean heat and freshwater transports during the world ocean circulation experiment. J Clim. 16:696–705. doi:10.1175/1520-0442(2003)016<0696:LSOHAF>2.0.CO;2
Gordon AL., 2005. Oceanography of the Indonesian seas and their throughflow. Oceanography. 18:14–27
Gordon AL, Fine RA., 1996. Pathways of water between the pacific and Indian oceans in the Indonesian seas. Nature. 379(6561):146–149
Koenig Z, Provost C, Park YH, Ferrari R, Sennéchael N., 2016. Anatomy of the Antarctic circumpolar current volume transports through drake passage. J Geophys Res Oceans. 121:2572–2595. doi:10.1002/2015JC011436
Liu QY, Feng M, Wang D, Wijffels S., 2015. Interannual variability of the Indonesian Throughflow transport: a revisit based on 30 year expendable bathythermograph data. J Geophys Res Oceans. 120:8270–8282. doi:10.1002/2015JC011351
Lumpkin R, Speer K., 2007. Global ocean meridional overturning. J Phys Oceanogr. 37:2550–2562. doi:10.1175/JPO3130.1
Meyers G., 1996. Variation of Indonesian Throughflow and the El Niño-Southern oscillation. J Geophys Res Oceans. 101(C5):12255–12263
Sprintall J, Gordon AL, Koch-Larrouy A, Lee T, Potemra JT, Pujiana K, Wijffels SE., 2014. The Indonesian seas and their role in the coupled ocean–climate system. Nat Geosci. 7:487–492
Sprintall J, Wijffels SE, Molcard R, Jaya I., 2009. Direct estimates of the Indonesian Throughflow entering the Indian ocean: 2004–2006. J Geophys Res. 114:12239. doi:10.1029/2008JC005257
Valdivieso M, Haines K, Balmaseda M, Chang Y-S, Drevillon M, Ferry N, Fujii Y, Köhl A, Storto A, Toyoda T, et al. 2017. An assessment of air–sea heat fluxes from ocean and coupled reanalyses. Clim Dyn. 49:983–1008. doi:10.1007/s00382-015-2843-3
Von Schuckmann K, Le Traon P-Y, Alvarez-Fanjul E, Axell L, Balmaseda M, Breivik L-A, Brewin RJW, Bricaud C, Drevillon M, Drillet Y, et al. 2016. The Copernicus Marine Environment Monitoring service ocean state report. J Oper Oceanogr. 9(Suppl 2):s235–s320
Vranes K, Gordon AL, Ffield A., 2002. The heat transport of the Indonesian Throughflow and implications for the Indian ocean heat budget. Deep Sea Res Part II Top Stud Oceanogr. 49(7):1391–1410
Woodgate RA, Aagaard K, Weingartner TJ., 2006. Interannual changes in the Bering Strait fluxes of volume, heat and freshwater between 1991 and 2004. Geophys Res Lett. 33:L15609. doi:10.1029/2006GL026931
Woodgate RA, Weingartner TJ, Lindsay R., 2012. Observed increases in Bering Strait oceanic fluxes from the pacific to the Arctic from 2001 to 2011 and their impacts on the Arctic ocean water column. Geophys Res Lett 39:L24603. doi:10.1029/2012GL054092
Section 2.4
Bruchert V, Currie B, Peard KR, Lass U, Endler R, Dubecke A, Julies E, Leipe T, Zitzman S., 2006. Biogeochemical and physical control of shelf anoxia and water column hydrogen sulphide in the Benguela coastal upwelling system. In: L. N., Neretin, editor. Past and present water column anoxia. New York: Springer; p. 161–193
Chan F, Barth JA, Lubchenco J, Kirincich A, Weeks H, Peterson WT, Menge BA., 2008. Emergence of anoxia in the California current large marine ecosystem. Science. 319:920–920. doi:10.1126/science.1149016
Chavez FP, Messié M., 2009. A comparison of eastern boundary upwelling ecosystems. Prog Oceanogr. 83:80–96
Cline JD, Richards FA., 1972. Oxygen-deficient conditions and nitrate reduction in the eastern tropical north pacific. Limnol Oceanogr. 17:885–900
Codispoti LA., 2010. Interesting times for marine N2O. Science. 327:1339–1340. doi:10.1126/science.1184945
Conley DJ, Humborg C, Rahm L, Savchuk OP, Wulff F., 2002. Hypoxia in the Baltic Sea and basin-scale changes in phosphorus biogeochemistry. Environ Sci Technol. 36:5315–5320
Dugdale R, Goering J, Barber R, Smith R, Packard T., 1977. Denitrification and hydrogen sulfide in the Peru upwelling region during 1976. Deep Sea Res. 24:601–608
Emerson S, Watanabe YW, Ono T, Mecking S., 2004. Temporal trends in apparent oxygen utilization in the upper pycnocline of the North Pacific: 1980–2000. J Oceanogr. 60:139–147. doi:10.1023/B:JOCE.0000038323.62130.a0
Falkowski PG, Algeo T, Codispoti L, Deutsch C, Emerson S, Hales B, Huey RB, Jenkins WJ, Kump LR, Levin LA, et al. 2011. Ocean deoxygenation: past, present, and future. Eos Trans AGU. 92(46):409–410
Feely RA, Sabine CL, Hernandez-Ayon JM, Ianson D, Hales B., 2008. Evidence for upwelling of corrosive ‘acidified’ water onto the continental shelf. Science. 320(5882):1490–1492. doi:10.1126/science.1155676
Franco AC, Hernandez-Ayon JM, Beier B, Garcon V, Maske H, Paulmier A, Farber-Lorda J, Castro R, Sosa-Avalos R., 2014. Air-sea CO2 fluxes above the stratified oxygen minimum zone in the coastal region off Mexico. J Geophys Res Oceans. 119. doi:10.1002/2013JC009337
Glessmer MS, Eden C, Oschlies A., 2009. Contribution of oxygen minimum zone waters to the coastal upwelling off Mauritania. Prog Oceanogr. 83:143–150
Gruber N., 2004. The dynamics of the marine nitrogen cycle and its influence on atmospheric CO2 variations. In: Follows M, Oguz T, editor. The ocean carbon cycle and climate. NATO ASI Series. Dordrecht: Kluwer Academic; p. 97–148
Hamersley MR, Lavik G, Woebken D, Rattray JE, Lam P, Hopmans EC, Sinninghe Damsté JS, Krüger S, Graco M, Gutiérrez D, Kuypers MMM., 2007. Anaerobic ammonium oxidation contributes significantly to nitrogen loss from the Peruvian oxygen minimum zone. Limnol Oceanogr. 52(3):923–933
Hofmann GE, Barry JP, Edmunds PJ, Gates RD, Hutchins DA, Klinger T, Sewell MA., 2010. The effect of ocean acidification on calcifying organisms in marine ecosystems: an organism-to-ecosystem perspective. Annu Rev Ecol Evol Syst. 41:127–147
Kalvelage T, Lavik G, Lam P, Contreras S, Arteaga L, Löscher C, Oschlies A, Paulmier A, Stramma L, Kuypers MMM., 2013. Nitrogen cycling driven by organic matter export in the south pacific oxygen minimum zone. Nat Geosci. doi:10.1038/NGEO1739
Karstensen J, Stramma L, Visbeck M., 2008. Oxygen minimum zones in the eastern tropical Atlantic and Pacific Oceans. Prog Oceanogr. 77:331–350
Keeling RE, Kortzinger A, Gruber N., 2010. Ocean deoxygenation in a warming world. Annu Rev Mar Sci. 2:199–229. doi:10.1146/annurev.marine.010908.163855
Kuypers MMM, Lavik G, Woebken D, Schmid M, Fuchs BM, Amann R, Jørgensen BB, Jetten MSM., 2005. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proc Natl Acad Sci USA. 102:6478–6483
Lavik G, Stührmann T, Bruchert V, Van der Plas A, Mohrholz V, Lam P, Mußmann M, Fuchs BM, Amann R, Lass U, et al. 2009. Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature. 457(7229):581–584
Long MC, Deutsch CA, Ito T., 2016. Finding forced trends in oceanic oxygen. Glob Biogeochem Cycles. 30:381–397
Löscher CR, Bange HW, Schmitz RA, Callbeck CM, Engel A, Hauss A, Kanzow T, Kiko R, Lavik G, Loginova A, et al. 2015. Water column biogeochemistry of oxygen minimum zones in the eastern tropical North Atlantic and eastern tropical south Pacific Oceans. Biogeosci Discuss. 12:4495–4556. doi:10.5194/bgd-12-4495-2015
Paulmier A, Ruiz-Pino D., 2009. Oxygen minimum zones (OMZs) in the modern ocean. Prog Oceanogr. 80:113–128. doi:10.1016/j.pocean.2008.08.001
Paulmier A, Ruiz-Pino D, Garçon V., 2008. The Oxygen Minimum Zone (OMZ) off Chile as intense source of CO2 and N2O. Cont Shelf Res. 28(20):2746–2756. doi:10.1016/j.csr.2008.09.012
Paulmier A, Ruiz-Pino D, Garçon V., 2011. CO2 maximum in the oxygen minimum zone (OMZ). Biogeosciences. 8:239–252
Schmidtko S, Stramma L, Visbeck M., 2017. Decline in global oceanic oxygen content during the past five decades. Nature. 542:335–339. doi:10.1038/nature21399
Schunck H, Lavik G, Desai DK, Groβkopf T, Kalvelage T, Loescher CR, Paulmier A, Muβmann M, Holtappels M, Contreras S, et al. 2013. Giant hydrogen sulfide plume in the oxygen minimum zone off Peru stimulates high chemoautotrophy. Plos One. doi:10.1371/journal.pone.0068661
Stramma L, Johnson GC, Sprintall J, Mohrholz V., 2008. Expanding oxygen minimum zones in the tropical oceans. Science. 320:655–658
Tomczak M, Godfrey JS., 1994. Regional oceanography: an introduction. Oxford: Elsevier. p.422
Section 2.5
Aiken J, Brewin RJW, Dufois F, Polimene L, Hardman-Mountford NJ, Jackson T, Loveday B, Hoya SM, Dall’Olmo G, Stephens J, et al. 2016. A synthesis of the environmental response of the North and South Atlantic sub-tropical gyres during two decades of AMT. Prog Oceanogr. doi:10.1016/j.pocean.2016.08.004
McClain CR, Signorini SR, Christian JR, 2004. Subtropical gyre variability observed by ocean-color satellites. Deep Sea Res Part II Top Stud Oceanogr. 51:281–301. doi:10.1016/j.dsr2.2003.08.002
Polovina JJ, Howell EA, Abecassis M, 2008. Ocean’s least productive waters are expanding. Geophys Res Lett. 35:270. doi:10.1029/2007GL031745
Signorini SR, Franz BA, McClain CR, 2015. Chlorophyll variability in the oligotrophic gyres: mechanisms, seasonality and trends. Front Mar Sci. 2. doi:10.3389/fmars.2015.00001
Section 2.6
Corbett CM, Subrahmanyam B, Giese BS., 2017. A comparison of sea surface salinity in the equatorial Pacific Ocean during the 1997–1998, 2012–2013, and 2014–2015 ENSO events. Clim Dyn. 49:3513–3526
Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, et al. 2011. The ERA-interim reanalysis: configuration and performance of the data assimilation system. Quart J R Meteorol Soc. 137:553–597
Drévillon M, Balmaseda M, Gasparin F, von Schuckmann K, Greiner E., 2016. The 2015 El Niño event, in ‘The copernicus marine environment monitoring service ocean state report’. J Oper Oceanogr. 9:s235–s320
Gasparin F, Roemmich D., 2017. The seasonal march of the equatorial pacific upper-ocean and its El Niño variability. Prog Oceanogr. 156:1–16
Glantz M., 2001. Currents of change: impacts of El Niño and La Niña on climate and society. Camebridge, UK: Cambridge University Press
Hackert E, Busalacchi AJ, Ballabrera-Poy J., 2014. Impact of Aquarius sea surface salinity observations on coupled forecasts for the tropical Indo-Pacific Ocean. J Geophys Res Oceans. 119:4045–4067. doi:10.1002/2013JC009697
Hu S, Fedorov AV., 2016. Exceptionally strong easterly wind burst stalling El Niño of 2014. Proc Natl Acad Sci USA 113(8):2005–2010
Jacox MG, Hazen EL, Zaba KD, Rudnick DL, Edwards CA, Moore AM, Bograd SJ., 2016. Impacts of the 2015–2016 El Niño on the California current system: early assessment and comparison to past events. Geophys Res Lett. 43:7072–7080
Johnson GC, Lyman JM, Purkey SG., 2015. Informing deep Argo array design using Argo and full-depth hydrographic section data. J Atmos Oceanic Technol. 32:2187–2198
Legler DM, Freeland HJ, Lumpkin R, Ball G, McPhaden MJ, North S, Crowley R, Goni GJ, Send U, Merrifield MA., 2015. The current status of the real-time in situ global ocean observing system for operational oceanography. J Oper Oceanogr. 8(Suppl. 2):s189–s200
L’Heureux ML, Takahashi K, Watkins AB, Barnston AG, Becker EJ, Liberto TED, Gamble F, Gottschalck J, Halpert MS, Huang B, et al. 2017. Observing and predicting the 2015–16 El Niño. Bull Am Meteor Soc. 98:1363–1382
McPhaden MJ., 1999. Genesis and evolution of the 1997–98 El Niño. Science. 283:950–954
McPhaden MJ., 2015. Playing hide and seek with El Niño. Nat Clim Change. 5:791–795. doi:10.1038/nclimate2775
Radenac M-H, Léger F, Singh A, Delcroix T., 2012. Sea surface chlorophyll signature in the tropical pacific during eastern and central pacific ENSO events. J Geophys Res 117:C04007. doi:10.1029/2011JC007841
Roemmich D, Gilson J., 2011. The global ocean imprint of ENSO. Geophys Res Lett 38:L13606. doi:10.1029/2011GL047992
Schiermeier Q., 2015. Hunting the Gozilla El Niño. Nature. 526:490–491. doi:10.1038/526490a
Shi L, Alves O, Wedd R, Balmaseda MA, Chang Y, Chepurin G, Ferry N, Fujii Y, Gaillard F, Good SA, et al. 2015. An assessment of upper ocean salinity content from the ocean reanalyses inter-comparison project (ORAIP). Clim Dyn. doi:10.1007/s00382-015-2868-7
von Schuckmann K, Balmaseda M, Simoncelli S., 2016. Ocean heat content, in ‘The Copernicus Marine Environment Monitoring service ocean state report’. J Oper Oceanogr. 9:s264–s266
Wang CD, Yu J-Y, DiNezio P, Clement A., 2017. El Niño and Southern Oscillation (ENSO): a review, coral reefs of the eastern tropical pacific: persistence and loss in a dynamic environment. In: W., Glynn, D. P., Manzello, I. C., Enoch, editor. Coral reefs of the world, Vol. 8. Springer; p. 85–106. doi:10.1007/978-94-017-7499-4_4
Wolter K, Timlin MS., 2011. El Niño/southern oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). Intl J Climatol. 31:1074–1087
Xue Y, Kumar A., 2017. Evolution of the 2015/16 El Niño and historical perspective since 1979. Sci China Earth Sci. 60:1572–1588. doi:10.1007/s11430-016-0106-9
Zhu J, Huang B, Zhang R-H, Hu Z-Z, Kumar A, Balmaseda MA, Marx L, Kinter JL, III. 2014. Salinity anomaly as a trigger for ENSO events. Sci Rep. 4:6821. doi:10.1038/srep06821
Section 2.7
Bessières L, Rio MH, Dufau C, Boone C, Pujol MI., 2013. Ocean state indicators from MyOcean altimeter products. Ocean Sci. 9:545–560. [accessed 2017 Nov 2]. www.ocean-sci.net/9/545/2013/. doi:10.5194/os-9-545-2013
Ducet N, Le Traon PY, Reverdin G., 2000. Global high-resolution mapping of ocean circulation from TOPEX/poseidon and ERS-1 and-2. J Geophys Res Oceans. 105(C8):19477–19498
Imawaki S, Bower AS, Beal L, Qiu B., 2013. Western boundary currents. In: Siedler G, Griffies SM, Gould J, Church JA, editor. International geophysics volume. 103. Ocean circulation and climate: a 21st century perspective. Oxford: Elsevier; p. 305–338
Larnicol G, Guinehut S, Rio MH, Drevillon M, Faugere Y, Nicolas G., 2006, March. The global observed ocean products of the French mercator project. In: Proceedings of ‘15 years of progress in radar altimetry’, Vol. 15. Venice (Italy): ESA publications; p. 614
Ma X, Jing Z, Chang P, Liu X, Montuoro R, Small RJ, Bryan FO, Greatbatch RJ, Brandt P, Wu D, et al. 2016. Western boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature. 535(7613):533–537
Overland J, Rodionov S, Minobe S, Bond N., 2008. North pacific regime shifts: definitions, issues and recent transitions. Prog Oceanogr. 77(2):92–102
Watelet S, Beckers J, Barth A., 2017. Reconstruction of the gulf stream from 1940 to the present and correlation with the North Atlantic oscillation. J Phys Oceanogr. 47(11):2741–2754
Wu L, Cai W, Zhang L, Nakamura H, Timmermann A, Joyce T, McPhaden MJ, Alexander M, Qiu B, Visbeck M M, et al. 2012. Enhanced warming over the global subtropical western boundary currents. Nat Clim Change. 2(3):161–166
Yang H, Lohmann G, Wei W, Dima M, Ionita M, Liu J., 2016a. Intensification and poleward shift of subtropical western boundary currents in a warming climate. J Geophys Res Oceans. 121:4928–4945
Section 2.8
Ba J, Keenlyside NS, Latif M, Park W, Ding H, Lohmann K, Mignot J, Menary M, Otterå OH, Wouters B, et al. 2014. A multi-model comparison of Atlantic multidecadal variability. Clim Dyn. 43:2333–2348. doi:10.1007/s00382-014-2056-1
Bryden HL, King BA, McCarthy GD, McDonagh EL., 2014. Impact of a 30% reduction in Atlantic meridional overturning during 2009–2010. Ocean Sci. 10:683–691. doi:10.5194/os-10-683-2014
Collins M, Knutti R, Arblaster J, Dufresne JL, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, et al. 2013. Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, editor. Climate change 2013: The physical science basis. Contribution of Working Group I to the fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; p. 1029–1136
Cunningham SA, Roberts CD, Frajka-Williams E, Johns WE, Hobbs W, Palmer MD, Rayner D, Smeed DA, McCarthy G., 2013. Atlantic meridional overturning circulation slowdown cooled the subtropical ocean. Geophys Res Lett. 40:6202–6207. doi:10.1002/2013GL058464
Jackson LC, Kahana R, Graham T, Ringer MA, Woollings T, Mecking JV, Wood RA., 2015. Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM. Clim Dyn. 45:3299–3316
Jackson LC, Peterson KA, Roberts CD, Wood RA., 2016. Recent slowing of Atlantic overturning circulation as a recovery from earlier strengthening. Nature Geosci. 9:518–522. doi:10.1038/ngeo2715
Josey SA, Hirschi JJ-M, Sinha B, Duchez A, Grist JP, Marsh R., 2018. The recent Atlantic cold anomaly: causes, consequences and related phenomena. Ann Rev Mar Sci. doi:10.1146/annurev-marine-121916-063102
McCarthy G, Frajka-Williams E, Johns WE, Baringer MO, Meinen CS, Bryden HL, Rayner D, Duchez A, Roberts C, Cunningham CA., 2012. Observed interannual variability of the Atlantic meridional overturning circulation at 26.5°N. Geophys Res Lett. 39:L19609. doi:10.1029/2012GL052933
Roberts CD, Waters J, Peterson KA, Palmer MD, McCarthy GD, Frajka-Williams E, Haines K, Lea DJ, Martin MJ, Storkey D, et al. 2013. Atmosphere drives recent interannual variability of the Atlantic meridional overturning circulation at 26.5N. Geophys Res Lett. 40:5164–5170
Robson J, Hodson D, Hawkins E, Sutton R., 2014. Atlantic overturning in decline? Nature Geosci. 7:2–3
Robson J, Ortega P, Sutton R., 2016. A reversal of climatic trends in the North Atlantic since 2005. Nat Geosci. 9:513–517. doi:10.1038/ngeo2727
Smeed D, McCarthy G, Rayner D, Moat BI, Johns WE, Baringer MO, Meinen CS., 2017. Atlantic meridional overturning circulation observed by the RAPID-MOCHA-WBTS (RAPID-Meridional Overturning Circulation and heatflux array-western boundary time series) array at 26N from 2004 to 2017. British Oceanographic Data Centre–Natural Environment Research Council. doi:10.5285/5acfd143-1104-7b58-e053-6c86abc0d94b
Smeed DA, McCarthy GD, Cunningham SA, Frajka-Williams E, Rayner D, Johns WE, Meinen CS, Baringer MO, Moat BI, Duchez A, et al. 2014. Observed decline of the Atlantic meridional overturning circulation 2004-2012. Ocean Sci. 10:29–38
Zhao J, Johns W., 2014. Wind-forced interannual variability of the Atlantic meridional overturning circulation at 26.5°N. J Geophys Res Oceans. 119:2403–2419. doi:10.1002/2013JC009407
Brunnabend SE, Schröter J, Rietbroek R, Kusche J., 2015. Regional sea level change in response to ice mass loss in Greenland, the West Antarctic and Alaska. J Geophys Res Oceans. 120:7316–7328
Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, et al. 2011. The ERA-interim reanalysis: configuration and performance of the data assimilation system. Quart J R Meteorol Soc. 137:553–597
Häkkinen S, Rhines PB, Worthen DL., 2015. Heat content variability in the North Atlantic Ocean in ocean reanalyses. Geophys Res Lett. 42:2901–2909
Hermanson L, Eade R, Robinson NH, Dunstone NJ, Andrews MB, Knight JR, Scaife AA, Smith DM., 2014. Forecast cooling of the Atlantic subpolar gyre and associated impacts. Geophys Res Lett. 41:5167–5174
Hurrell JW., 1995. Decadal trends in the North Atlantic oscillation and relationships to regional temperature and precipitation. Science. 269(5224):676–679
Jackson LJ, Peterson KA, Roberts CD, Wood RA., 2016. Recent slowing of Atlantic overturning circulation as a recovery from earlier strengthening. Nature Geosci. 9:518–522
Josey SA, Grist J, Kieke D, Yashayaev I, Yu L., 2015. Extraordinary ocean cooling and new dense water formation in the North Atlantic (Sidebar 3.2), in: the state of the climate in 2014. Bull Amer Met Soc. 96(7):66–67
Josey SA, Hirschi JJ-M, Sinha B, Duchez A, Grist JP, Marsh R., 2017. The recent Atlantic cold anomaly: causes, consequences and related phenomena. Ann Rev Mar Sci. 10:475–501
Kieke D, Yashayaev I., 2015. Studies of Labrador Sea water formation and variability in the subpolar North Atlantic in the light of international partnership and collaboration. Prog Oceanogr. 132(3):220–232. doi:10.1016/j.pocean.2014.12.010
Klower M, Latif M, Ding H, Greatbatch RJ, Park W., 2014. Atlantic meridional overturning circulation and the prediction of north Atlantic sea surface temperature. Earth Planet Sc Lett. 406:1–6
Piron A, Thierry V, Mercier H, Caniaux G., 2017. Gyre scale deep convection in the subpolar North-Atlantic Ocean during winter 2014-2015. Geophys Res Lett. doi:10.1002/2016GL071895
Robson J, Sutton R, Lohmann K, Smith D, Palmer MD., 2012. Causes of the rapid warming of the North Atlantic Ocean in the Mid-1990s. J Climate. 25:4116–4134
Robson J, Sutton R, Smith D., 2014. Decadal predictions of the cooling and freshening of the North Atlantic in the 1960s and the role of ocean circulation. Clim Dynam. 42:2353–2365
Smeed D, McCarthy GD, Cunningham SA, Frajka-Williams E, Rayner D, Johns WE, Meinen CS, Baringer MO, Moat BI, Duchez A, et al. 2014. Observed decline of the Atlantic meridional overturning circulation 2004–2012. Ocean Sci. 10:29–38
Yang Q, Dixon TH, Myers PG, Bonin J, Chambers D, van den Broeke MR., 2016. Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation. Nat Commun. 7:10275. doi:10.1038/ncomms10525
Yashayaev I, Loder JW., 2016. Recurrent replenishment of Labrador Sea water and associated decadal-scale variability. J Geophys Res Oceans. 121:8095–8114. doi:10.1002/2016JC012046
Yashayaev I, Loder JW., 2017. Further intensification of deep convection in the Labrador Sea in 2016. Geophys Res Lett. 44:1429–1438. doi:10.1002/2016GL071668
Yeager S, Karspeck A, Danabasoglu G, Tribbia J, Teng HY., 2015. A decadal prediction case study: late twentieth-century north Atlantic Ocean heat content. J Climate. 25:5173–5189
Section 2.10
Aagaard K, Carmack EC., 1989. The role of sea ice and other fresh water in the Arctic circulation. J Geophys Res. 94(C10):14485–14485
Beszczynska-Möller A, Woodgate RA, Lee C, Melling H, Karcher M., 2011. A synthesis of exchanges through the main oceanic gateways to the Arctic Ocean. Oceanography. 24(3):82–99. doi:10.5670/oceanog.2011.59
Carmack EC, Yamamoto-Kawai M, Haine TWN, Bacon S, Bluhm BA, Lique C, Melling H, Polyakov IV, Straneo F, Timmermans M-L, Williams WJ., 2016. Freshwater and its role in the Arctic marine system: sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans. J Geophys Res Biogeosci. 121:675–717. doi:10.1002/2015JG003140
Condron A, Winsor P, Hill C, Menemenlis D., 2009. Simulated response of the Arctic freshwater budget to extreme NAO wind forcing. J Clim. 22:2422–2437
Haine TW, Curry B, Gerdes R, Hansen E, Karcher M, Lee C, Rudels B, Spreen G, de Steur L, Stewart KD, et al. 2015. Arctic freshwater export: status, mechanisms, and prospects. Glob Planet Change. 125:13–35
Ilıcak M, Drange H, Wang Q, Gerdes R, Aksenov Y, Bailey D, Bentsen M, Biastoch A, Bozec A, Böning C, et al. 2016. An assessment of the Arctic ocean in a suite of interannual CORE-II simulations. Part III: hydrography and fluxes. Ocean Model. 100:141–161. ISSN 1463-5003. doi:10.1016/j.ocemod.2016.02.004
Jahn A, Aksenov Y, de Cuevas BA, de Steur L, Hakkinen S, Hansen E, Herbaut C, Houssais M-N, Karcher M, Kauker F, et al. 2012. Arctic Ocean freshwater: How robust are model simulations? J Geophys Res. 117(C00D16). doi:10.1029/2012JC007907
Lique C, Holland MM, Dibike YB, Lawrence DM, Screen JA., 2016. Modeling the Arctic freshwater system and its integration in the global system: lessons learned and future challenges. J Geophys Res Biogeosci. 121:540–566. doi:10.1002/2015JG003120
Mauritzen C, Melsom A, Sutton RT., 2012. Importance of density-compensated temperature change for deep north Atlantic Ocean heat uptake. Nature Geosci. 5. doi:10.1038/ngeo1639
Mysak LA, Wright KM, Sedláček J, Eby M, Earth System Modelling Group. 2005. Simulation of sea ice and ocean variability in the Arctic during 1955–2002 with an intermediate complexity model. Atmos Ocean. 43:101–118
Proshutinsky A, Krishfield R, Timmermans M-L, Toole J, Carmack E, McLaughlin F, Williams WJ, Zimmermann S, Itoh M, Shimada K., 2009. Beaufort gyre freshwater reservoir: state and variability from observations. J Geophys Res. 114:C00A10-6. doi:10.1029/2008JC005104
Prowse T, Bring A, Mård J, Carmack E., 2015a. Arctic freshwater synthesis: introduction. J Geophys Res Biogeosci. 120. doi:10.1002/2015JG003127
Prowse T, Bring A, Mård J, Carmack E, Holland M, Instanes A, Vihma T, Wrona FJ., 2015b. Arctic freshwater synthesis: summary of key emerging issues. J Geophys Res Biogeosci. 120:1887–1893. doi:10.1002/2015JG003128
Rabe B, Karcher M, Kauker F, Schauer U, Toole JM, Krishfield RA, Pisarev S, Kikuchi T, Su J., 2014. Arctic Ocean basin liquid freshwater storage trend 1992–2012. Geophys Res Lett. 41:961–968. doi:10.1002/2013GL058121
Rahmstorf S, Crucifix M, Ganopolski A, Goosse H, Kamenkovich I, Knutti R, Lohmann G, Marsh R, Mysak LA, Wang Z, et al. 2005. Thermohaline circulation hysteresis: A model intercomparison. Geophys Res Lett. 32:301. doi:10.1029/2005GL023655
Serreze MC, Barrett AP, Slater AG, Woodgate RA, Aagaard K, Lammers RB, Steele M, Moritz R, Meredith M, Lee CM., 2006. The large-scale freshwater cycle of the Arctic. J Geophys Res. 111:14485. doi:10.1029/2005JC003424
Stouffer RJ, Yin J, Gregory JM, Dixon KW, Spelman MJ, Hurlin W, Weaver AJ, Eby M, Flato GM, Hasumi H, et al. 2006. Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim. 19(8):1365–1387. doi:10.1175/JCLI3689.1
Wang Q, Ilicak M, Gerdes R, Drange H, Aksenov Y, Bailey DA, Bentsen M, Biastoch A, Bozec A, Böning C., 2016. An assessment of the Arctic ocean in a suite of interannual CORE-II simulations. Part II: liquid freshwater. Ocean Modelling. 99:86–109
Woodgate RA, Weingartner TJ, Lindsay R., 2012. Observed increases in Bering Strait oceanic fluxes from the pacific to the Arctic from 2001 to 2011 and their impacts on the Arctic ocean water column. Geophys Res Lett. 39. doi:10.1029/2012GL054092
Zhang R, Vallis GK., 2006. Impact of great salinity anomalies on the low-frequency variability of the North Atlantic climate. J Clim. 19:470–482
Section 3.1
Araújo IB, Pugh DT., 2008. Sea levels at Newlyn 1915 to 2005: analysis of trends for future flooding risks. J Coast Res. 4:203–212. doi: 10.2112/06-0785.1
Barstow SF., 1996. World wave atlas. AVISO Altimeter Newslett. 4:24–25
Bertin X, Prouteau E, Letetrel C., 2013. A significant increase in wave height in the North Atlantic Ocean over the 20th century. Glob Planet Change. 106:77–83. doi: 10.1016/j.gloplacha.2013.03.009
Cid A, Menéndez M, Castanedo S, Abascal A, Méndez F, Medina R., 2015. Long-term changes in the frequency, intensity and duration of extreme storm surge events in Southern Europe. Clim Dyn 1–14. doi:10.1007/s00382-015-2659-1
Chronis T, Papadopoulos V, Nikolopoulos EI., 2011. Quickscat observations of extreme wind events over the Mediterranean and Black Seas during 2000-2008. Int J Climatol. 31:2068–2077. doi: 10.1002/joc.2213
Church J, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann A, Merrifield MA, Milne GA, Nerem RS, Nunn PD, et al. 2013. Climate change 2013: The physical science basis: Sea level change. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; p. 1137–1216
Church JA, White NJ., 2011. Sea-level rise from the late 19th to the early 21st century. Surv Geophys 32:585–602. doi: 10.1007/s10712-011-9119-1
Church JA, White NJ, Hunter JR., 2006. Sea-level rise at tropical Pacific and Indian Ocean islands. Glob Planet Change. 53(3):155–168. doi: 10.1016/j.gloplacha.2006.04.001
Copernicus Marine In Situ Team. 2017. Copernicus. Situ TAC, real time quality control for WAVES. CMEMS-INS-WAVES-RTQC. doi:10.13155/46607
Dangendorf S, Müller-Navarra S, Jensen J, Schenk F, Wahl T, Weisse R., 2014. North Sea storminess from a novel storm surge record since AD 1843. J Clim. 27:3582–3595. doi: 10.1175/JCLI-D-13-00427.1
Donlon CJ, Martin M, Stark J, Roberts-Jones J, Fiedler E, Wimmer W., 2011. The operational sea surface temperature and sea ice analysis (OSTIA). Remote Sens Environ. doi:10.1016/j.rse.2010.10.017
EuroGOOS DATA-MEQ working group. 2010. Recommendations for in-situ data near real time quality control. doi:10.13155/36230
Gulev SK, Grigorieva V, Sterl A, Woolf D., 2003. Global climatology of ocean waves from the VOS data. J. Geophys Res Oceans. 108 (C7):3236. doi: 10.1029/2002JC001437
Hay CC, Morrow E, Kopp RE, Mitrovica JX., 2015. Probabilistic reanalysis of twentieth-century sea level rise. Nature. 517:481–484. doi: 10.1038/nature14093
Hibbert A, Royston SJ, Horsburgh KJ, Leach H, Hisscott A., 2015. An empirical approach to improving tidal predictions using recent real-time tide gauge data. J Oper Oceanogr. 8(1):40–51. doi:10.1080/1755876X.2015.1014641
Holgate SJ, Woodworth PL., 2004. Evidence for enhanced coastal sea level rise during the 1990s. Geophys Res Lett. 31:L07305. doi: 10.1029/2004GL019626
IPCC. 2013. Climate change 2013: The physical science basis. Contribution of the Working Group I to the 5th Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; p. 1535
Jevrejeva S, Moore JC, Grinsted A, Woodworth PL., 2008. Recent global sea level acceleration started over 200 years ago? Geophys Res Lett. 35:L08715. doi: 10.1029/2008GL033611
Lionello P, Rizzoli PM, Boscolo R, editors 2006. Mediterranean climate variability. Developments in earth and environmental sciences. 4. Amsterdam: Springer
Marcos M, Calafat FM, Berihuete A, Dangendorf S., 2015. Long term variations in global sea level extremes. J Geophys Res Oceans 120(12):8115–8134. doi: 10.1002/2015JC011173
Marcos M, Jordá G, Gomis D, Pérez-Gómez B., 2011. Changes in storm surges in Southern Europe from a regional model under climate change scenarios. Glob Planet Change. 77:116–128. doi: 10.1016/j.gloplacha.2011.04.002
Marcos M, Woodworth PL., 2017. Spatio-temporal changes in extreme sea levels along the coasts of the North Atlantic and the Gulf of Mexico. J Geophys Res Oceans. 122:7031–7048. doi: 10.1002/2017JC013065
Menéndez M, García-Díez M, Fita L, Fernández J, Méndez FJ, Gutiérrez JM., 2014. High-resolution sea wind hindcasts over the Mediterranean area. Clim Dyn. 42:1857–1872. doi: 10.1007/s00382-013-1912-8
Menéndez M, Woodworth PL., 2010. Changes in extreme high water levels based on a quasi-global tide-gauge data set. J Geophys Res. 115:C10011. doi:10.1029/2009JC005997
Merrifield MA, Genz AS, Kontoes CP, Marra JJ., 2013. Annual maximum water levels from tide gauges: contributing factors and geographic patterns. J Geophys Res Oceans 118:2535–2546. doi:10.1002/jgrc.20173
Merrifield MA, Merrifield ST, Mitchum GT., 2009. An anomalous recent acceleration of global sea level rise. J Clim. 22(21):5772–5781. doi: 10.1175/2009JCLI2985.1
Pérez-Gómez B, Álvarez-Fanjul E, She J, Pérez-González I, Manzano F., 2016. Extreme sea level events, Section 4.4, p 300. In: Von Schuckmann K, Le Traon PY, Alvarez-Fanjul E, Axell L, Balmaseda M, Breivik LA, Brewin RJW, Bricaud C, Drevillon M, Drillet Y, et al. The copernicus Marine environment monitoring service Ocean state Report. J Oper Oceanogr. 9(Suppl 2):235–320. doi:10.1080/1755876X.2016.1273446
Pérez-Gómez B, Manzano F, Alvarez-Fanjul E, González c, Cantavella JV, Schindelé F., 2016. Lessons derived from two high-frequency Sea level events in the Atlantic: implications for coastal risk analysis and tsunami detection. Front Mar Sci. 3:206. doi:10.3389/fmars.2016.00206
Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A., 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res. 108:4407. doi:10.1029/2002JD002670
Riser SC, Freeland HJ, Roemmich D, Wijffels S, Troisi A, Belbeoch M, Gilbert D, Xu J, Pouliquen S, Thresher A, et al. 2016. Fifteen years of ocean observations with the global Argo array. Nat Clim Chang. 6:145–153. doi:10.1038/nclimate2872
Soomere T, Weisse R, Behrensin A., 2011. Wave climate in the Arkona Basin, the Baltic Sea. Ocean Sci Discuss. 8(6). doi:10.5194/osd-8-2237-2011
Talke SA, Orton P, Jay DA., 2014. Increasing storm tides in New York Harbor, 1844–2013. Geophys Res Lett. 41:3149–3155. doi:10.1002/2014GL059574
Vilibić I, Šepić J., 2010. Long-term variability and trends of sea level storminess and extremes in European seas. Glob Planet Change. 71:1–12. doi: 10.1016/j.gloplacha.2009.12.001
Wahl T, Chambers DP., 2015. Evidence for multidecadal variability in US extreme sea level records. J Geophys Res Oceans. 120:1527–1544. doi:10.1002/2014JC010443
Weisse R, Bellafiore D, Menéndez M, Méndez F, Nicholls RJ, Umgiesser G, Willems P., 2014. Changing extreme sea levels along European coasts. Coastal Eng. 87:4–14. doi: 10.1016/j.coastaleng.2013.10.017
WMO. 2016. 19-meter wave sets new record–highest significant wave height measured by a buoy. World Meteorological Organization; [accessed 2017 May]. https://public.wmo.int/en/media/press-release/19-meter-wave-sets-new-record-highest-significant-wave-height-measured-buoy
Woodworth PL, Blackman DL., 2002. Changes in extreme high waters at Liverpool since 1768. Int J Climatol. 22(6):697–714. doi: 10.1002/joc.761
Woodworth PL, Blackman DL., 2004. Evidence for systematic changes in extreme high waters since the mid-1970s. J Clim. 1190–1197. doi: 10.1175/1520-0442(2004)017<1190:EFSCIE>2.0.CO;2
Årthun M, Eldevik T, Smedsrud LH, Skagseth Ø, Ingvaldsen RB., 2012. Quantifying the influence of Atlantic heat on Barents Sea Ice variability and retreat*. J Clim. 25:4736–4743. doi:10.1175/JCLI-D-11-00466.1
Beszczynska-Möller A, Fahrbach E, Schauer U, Hansen E., 2012. Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997-2010. ICES J Mar Sci. 69(5):852–863. doi: 10.1093/icesjms/fss056
Borenäs KM, Lundberg PA., 2004. The Faroe-Bank channel deep-water overflow. Deep-Sea Res II. 51:335–350. doi: 10.1016/j.dsr2.2003.05.002
Clarke RA, Swift JH, Reid JL, Koltermann KP., 1990. The formation of Greenland sea deep-water–double diffusion or deep convection. Deep-Sea Res Part A. 37(9):1385–1424. doi: 10.1016/0198-0149(90)90135-I
de Steur L, Pickart RS, Macrander A, Våge K, Harden B, Jónsson S, Østerhus S, Valdimarsson H., 2017. Liquid freshwater transport estimates from the East Greenland current based on continuous measurements north of Denmark strait. J Geophys Res Oceans. 122(1):93–109. doi: 10.1002/2016JC012106
Dickson RR, Brown J., 1994. The production of north-atlantic deep-water–sources, rates, and pathways. J Geophy Res Oceans. 99(C6):12319–12341. doi: 10.1029/94JC00530
Eldevik T, Nilsen JEØ, Iovino D, Olsson KA, Sandø AB, Drange H., 2009. Observed sources and variability of Nordic seas overflow. Nat Geosci. 2(6):405–409. doi: 10.1038/ngeo518
Fossheim M, Primicerio R, Johannesen E, Ingvaldsen RB, Aschan MM, Dolgov AV., 2015. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat Clim Change. 5:673–678. doi: 10.1038/nclimate2647
Furevik T., 2001. Annual and interannual variability of Atlantic water temperatures in the Norwegian and Barents Seas: 1980-1996. Deep-Sea Res I. 48:383–404. doi: 10.1016/S0967-0637(00)00050-9
Furevik T, Nilsen JEØ. 2005. Large-Scale atmospheric circulation variability and its impacts on the Nordic seas ocean climate–a review. Nordic Seas Integr Perspect. 158:105–136
Hansen B, Larsen KMH, Hátún H, Kristiansen R, Mortensen E, Østerhus S., 2015. Transport of volume, heat, and salt towards the Arctic in the Faroe current 1993-2013. Ocean Sci. 11:743–757. doi: 10.5194/os-11-743-2015
Hansen B, Østerhus S., 2000. North Atlantic–Nordic seas exchanges. Prog Oceanogr. 45:109–208. doi: 10.1016/S0079-6611(99)00052-X
Hansen B, Østerhus S, Hátún H, Kristiansen R, Larsen KMH., 2003. The Iceland-Faroe inflow of Atlantic water to the Nordic seas. Prog Oceanogr. 59(4):443–474. doi: 10.1016/j.pocean.2003.10.003
Ingvaldsen R, Loeng H, Asplin L., 2002. Variability in the Atlantic inflow to the Barents Sea based on a one-year time series from moored current meters. Cont Shelf Res. 22:505–519. doi: 10.1016/S0278-4343(01)00070-X
Jochumsen K, Moritz M, Nunes M, Quadfasel D, Larsen KMH, Hansen B, Valdimarsson H, Jónsson S., 2017. Revised transport estimates of the Denmark strait overflow. J Geophys Res. 122(4):3434–3450. doi: 10.1002/2017JC012803
Lien VS, Trofimov AG., 2013. Formation of Barents Sea branch water in the north-eastern Barents Sea. Polar Res. 32:18905. doi: 10.3402/polar.v32i0.18905
Lien VS, Hjøllo SS, Skogen MD, Svendsen E, Wehde H, Bertino L, Counillon F, Chevallier M, Garric G., 2016. An assessment of the added value from data assimilation on modeled Nordic Seas hydrography and ocean transports. Ocean Model. 99:43–59. doi: 10.1016/j.ocemod.2015.12.010
Martin S, Cavalieri DJ., 1989. Contributions of the Siberian shelf polynyas to the Arctic Ocean intermediate and deep water. J Geophys Res. 94:12725–12738. doi: 10.1029/JC094iC09p12725
Mauritzen C., 1996. Production of dense overflow waters feeding the North Atlantic across the Greenland-scotland ridge. 1. Evidence for a Revised Circulation Scheme. Deep-Sea Res Part I. 43(6):769–806. doi: 10.1016/0967-0637(96)00037-4
Mauritzen C, Hansen E, Andersson M, Berx B, Beszczynzka-Möller A, Burud I, Christensen KH, Debernard J, de Steur L, Dodd P, et al. 2011. Closing the loop–approaches to monitoring the state of the Arctic Mediterranean during the International Polar Year 2007-2008. Prog Oceanogr. 90:62–89. doi: 10.1016/j.pocean.2011.02.010
Midttun L., 1985. Formation of dense bottom water in the Barents Sea. Deep-Sea Res. Part A. 32:1233–1241. doi: 10.1016/0198-0149(85)90006-8
Mork KA, Skagseth Ø. 2010. A quantitative description of the Norwegian Atlantic current by combining altimetry and hydrography. Ocean Sci. 6(4):901–911. doi: 10.5194/os-6-901-2010
Onarheim IH, Eldevik T, Årthun M, Ingvaldsen RB, Smedsrud LH., 2015. Skillful prediction of Barents Sea ice cover. Geophys Res Lett. 42(13):5364–5371. doi: 10.1002/2015GL064359
Orvik KA, Skagseth Ø, Mork M., 2001. Atlantic inflow to the Nordic Seas: current structure and volume fluxes from moored current meters, VM-ADCP and SeaSoar-CTD observations, 1996-1999. Deep-Sea Res. Part I. 48:937–957. doi: 10.1016/S0967-0637(00)00038-8
Piechura J, Walczowski W., 2009. Warming of the West Spitsbergen current and sea ice north of Svalbard. Oceanologia. 51(2):147–164. doi: 10.5697/oc.51-2.147
Polyakov I, Beszczynska-Möller A, Carmack E, Dmitrenko I, Fahrbach E, Frolov I, Gerdes R, Hansen E, Holfort J, Ivanov V, et al. 2005. One more step toward a warmer Arctic. Geophys Res Lett. 32(17):L17605. doi:10.1029/2005GL023740
Polyakov IV, Pnyushkov AV, Alkire MB, Ashik IM, Baumann TM, Carmack EC, Goszczko I, Guthrie J, Ivanov VV, Kanzow T, et al. 2017. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science. doi:10.1126/science.aai8204
Polyakov IV, Pnyushkov AV, Timokhov LA., 2012. Warming of the intermediate Atlantic water of the Arctic Ocean in the 2000s. J Clim. 25(23):8362–8370. doi: 10.1175/JCLI-D-12-00266.1
Raj RP, Johannessen JA, Eldevik T, Nilsen JEØ, Halo I., 2016. Quantifying mesoscale eddies in the Lofoten Basin. J Geophys Res Oceans. 121. doi:10.1002/2016JC011637
Rhines PB, Hakkinen S, Josey S, et al. 2008. Is oceanic heat transport significant in the climate system? In: Dickson, editor. Arctic-Subarctic Ocean flux: defining the role of the northern seas in climate. New York: Springer; p. 87–109
Rudels B., 2012. Arctic Ocean circulation and variability–advection and external forcing encounter constraints and local processes. Ocean Sci. 8(2):261–286. doi: 10.5194/os-8-261-2012
Sakov P, Counillon F, Bertino L, Lisæter KA, Oke PR, Korablev A., 2012. Topaz4: an ocean-sea ice data assimilation system for the North Atlantic and Arctic. Ocean Sci. 8(4):633–656. doi: 10.5194/os-8-633-2012
Sandø AB, Nilsen JEØ, Gao Y, Lohmann K., 2010. Importance of heat transport and local air-sea heat fluxes for the Barents Sea climate variability. J Geophys Res Oceans. 115:701. doi:10.1029/2009JC005884
Schauer U, Fahrbach E, Østerhus S, Rohardt G., 2004. Arctic warming through the Fram Strait: Oceanic heat transport from 3 years of measurements. J Geophys Res. 109:C06026. doi: 10.1029/2003JC001823
Segtnan OH, Furevik T, Jenkins AD., 2011. Heat and freshwater budgets of the Nordic seas computed from atmospheric reanalysis and ocean observations. J Geophys Res Oceans. 116:C11003. doi: 10.1029/2011JC006939
Skogseth R, Smedsrud LH, Nilsen F, Fer I., 2008. Observations of hydrography and downflow of brine-enriched shelf water in the Storfjorden Polynya, Svalbard. J Geophys Res. 113:C08049. doi: 10.1029/2007JC004452
Smedsrud LH, Esau I, Ingvaldsen RB, Eldevik T, Haugan PM, Li C, Lien VS, Olsen A, Omar AM, Otterå OH, et al. 2013. The role of the Barents Sea in the climate system. Rev Geophys. 51:415–449. doi: 10.1002/rog.20017
Sundby S., 2000. Recruitment of Atlantic cod stocks in relation to temperature and advection of copepod populations. Sarsia. 85:277–298. doi: 10.1080/00364827.2000.10414580
Sundby S, Fossum P, Sandvik A, Vikebø FB, Aglen A, Buhl-Mortensen L, Folkvord A, Bakkeplass K, Buhl-Mortensen P, Johannessen M, et al. 2013. Kunnskapsinnhenting barentshavet-lofoten-vesterålen (KILO). Fisken og Havet. 3–2013. 188pp. (In Norwegian)
Walczowski W, Piechura J, Goszczko I, Wieczorek P., 2012. Changes in Atlantic water properties: an important factor in the European Arctic marine climate. ICES J Mar Sys. 69(5):864–869. doi: 10.1093/icesjms/fss068
Xie JP, Counillon F, Bertino L, Tian-Kunze X, Kaleschke L., 2016. Benefits of assimilating thin sea ice thickness from SMOS into the TOPAZ system. Cryosphere. 10(6):2745–2761. doi: 10.5194/tc-10-2745-2016
Bozec A, Lozier MS, Chassignet EP, Halliwell GR., 2011. On the variability of the Mediterranean outflow water in the North Atlantic from 1948 to 2006. J Geophys Res 116:C09033. doi:10.1029/2011JC007191
Daniault N, Maze JP, Arhan M., 1994. Circulation and mixing of MediterraneanWater west of the Iberian Peninsula. Deep Sea Res. Part I. 41:1685–1714. doi: 10.1016/0967-0637(94)90068-X
García Lafuente J, Sánchez Román A, Díaz del Río G, Sannino G, Sánchez Garrido JC., 2007. Recent observations of seasonal variability of the Mediterranean outflow in the strait of Gibraltar. J Geophys Res. 112(C10):C10005. doi:10.1029/2006JC003992
Holliday NP., 2003. Air-sea interaction and circulation changes in the northeast Atlantic. J Geophys Res. 108(C8):3259. doi:10.1029/2002JC001344
Holliday PN, Hughes SL, Bacon S, Beszczynska-Möller A, Hansen B, Lavín A, Loeng H, Mork KA, Østerhus S, Sherwin T, et al. 2008. Reversal of the 1960s to 1990s freshening trend in the northeast North Atlantic and Nordic Seas. Geophys Res Lett. 35(3):L03614. doi:10.1029/2007GL032675
Iorga CI, Lozier MS., 1999. Signatures of the Mediterranean outflow from a North Atlantic climatology 1. Salinity and density fields. J Geophys Res. 104(C11):25985–26009. doi: 10.1029/1999JC900115
Leadbetter SJ, Williams RG, McDonagh EL, King BA., 2007. A twenty year reversal in water mass trends in the subtropical North Atlantic. Geophys Res Lett. 34:L12608. doi:10.1029/2007GL029957
Lozier MS, Stewart NM., 2008. On the temporally varying northward penetration of Mediterranean overflow water and eastward penetration of Labrador Sea water. J Phys Oceanogr. 38(9):2097–2103. doi:10.1175/2008JPO3908.1
Mazé JP, Arham M, Mercier H., 1997. Volume budget of the eastern boundary layer off the Iberian Peninsula. Deep Sea Res. 44(9-10):1543–1574. doi: 10.1016/S0967-0637(97)00038-1
Paillet J, Arhan M, McCartney M., 1998. Spreading of labrador Sea water in the eastern North Atlantic. J Geophys Res. 103(C5):10223–10239. doi: 10.1029/98JC00262
Prieto E, González-Pola C, Lavín A, Sánchez RF, Ruiz-Villarreal M., 2013. Seasonality of intermediate waters hydrography west of the Iberian Peninsula from an 8 yr semiannual time series of an oceanographic section. Ocean Sci. 9:411–429. doi:10.5194/os-9-411-2013
Reid JL., 1979. On the contribution of the Mediterranean Sea outflow to the Norwegian-Greenland Sea. Deep Sea Res. 26(11):1199–1223. doi:10.1016/0198-0149(79)90064-5
Van Aken HM., 2000. The hydrography of the mid-latitude northeast Atlantic Ocean I: the deep water masses. Deep Sea Res. Part I. 47:757–788. doi: 10.1016/S0967-0637(99)00092-8
Adani M, Dobricic S, Pinardi N., 2011. Quality assessment of a 1985-2007 Mediterranean Sea reanalysis. J Atmos Ocean Technol. 28(4):569–589. doi: 10.1175/2010JTECHO798.1
Bensi M, Velaoras D, Meccia VL, Cardin V., 2016. Effects of the eastern Mediterranean Sea circulation on the thermohaline properties as recorded by fixed deep-ocean observatories. Deep Sea Res Part I. 112:1–13. ISSN 0967-0637. doi:10.1016/j.dsr.2016.02.015
Bessières L, Rio MH, Dufau C, Boone C, Pujol MI., 2013. Ocean state indicators from MyOcean altimeter products. Ocean Science. 9(3):545. doi: 10.5194/os-9-545-2013
Castellari S, Pinardi N, Leaman K., 2000. Simulation of water mass formation processes in the Mediterranean Sea: influence of the time frequency of the atmospheric forcing. J Geophys Res Oceans. 105(C10):24157–24181. doi: 10.1029/2000JC900055
Gačić M, Civitarese G, Eusebi Borzelli GL, Kovačević V, Poulain PM, Theocharis A, Menna M, Catucci A, Zarokanellos N., 2011. On the relationship between the decadal oscillations of the northern Ionian Sea and the salinity distributions in the eastern Mediterranean. J Geophys Res 116:C12002. doi:10.1029/2011JC007280
Herrmann M, Estournel C, Déqué M, Marsaleix P, Sevault F, Somot S., 2008. Dense water formation in the Gulf of lions shelf: impact of atmospheric interannual variability and climate change. Cont Shelf Res. 28(15):2092–2112. ISSN 0278-4343. doi:10.1016/j.csr.2008.03.003
Houpert L, de Madron XD, Testor P, Bosse A, D'Ortenzio F, Bouin MN, Dausse D, Le Goff H, Kunesch S, Labaste M, et al. 2016. Observations of open-ocean deep convection in the northwestern Mediterranean Sea: seasonal and interannual variability of mixing and deep water masses for the 2007-2013 period. J Geophys Res Oceans. 121:8139–8171. doi: 10.1002/2016JC011857
Houpert L, Testor P, de Madron XD, Somot S, D’Ortenzio F, Estournel C, Lavigne H., 2015. Seasonal cycle of the mixed layer, the seasonal thermocline and the upper-ocean heat storage rate in the Mediterranean Sea derived from observations. Prog Oceanogr. 132:333–352. ISSN 0079-6611. doi:10.1016/j.pocean.2014.11.004
Kontoyiannis H, Theocharis A, Nittis K., 1999. Structures and characteristics of newly formed water masses in the NW levantine during 1986, 1992, 1995. In: Malanotte-Rizzoli P., Eremeev V.N., editor. The eastern Mediterranean as a laboratory basin for the assessment of contrasting ecosystems. NATO science series (series 2: environmental security), Vol. 51. Springer: Dordrecht
Krokos G, Velaoras D, Korres G, Perivoliotis L, Theocharis A., 2014. On the continuous functioning of an internal mechanism that drives the eastern Mediterranean thermohaline circulation: the recent activation of the Aegean Sea as a dense water source area. J Mar Sys. 129:484–489. ISSN 0924-7963. doi:10.1016/j.jmarsys.2013.10.002
Lascaratos A, Williams RG, Tragou E., 1993. A mixed-layer study of the formation of levantine intermediate water. J Geophys Res 98(C8):14739–14749. doi:10.1029/93JC00912
Leaman KD, Schott FA., 1991. Hydrographic structure of the convection regime in the Gulf of lions: winter 1987. J Phys Oceanogr 21:575–598. doi:10.1175/1520-0485(1991)021<0575:HSOTCR>2.0.CO;2
Manca B, Kovacevic V, Gačić M, Viezzoli D., 2002. Dense water formation in the Southern Adriatic Sea and spreading into the Ionian Sea in the period 1997–1999. J Mar Sys. 33/34:33–154. doi: 10.1016/S0924-7963(02)00056-8
Mantziafou A, Lascaratos A., 2004. An eddy resolving numerical study of the general circulation and deep-water formation in the Adriatic Sea. Deep-Sea Res Part I. 51:921–952. doi: 10.1016/j.dsr.2004.03.006
Pinardi N, Masetti E., 2000. Variability of the large scale general circulation of the Mediterranean Sea from observations and modelling: a review. Palaeogeogr Palaeoclimatol Palaeoecol. 15:153–173. doi: 10.1016/S0031-0182(00)00048-1
Pinardi N, Zavatarelli M, Adani M, Coppini G, Fratianni C, Oddo P, Simoncelli S, Tonani M, Lyubartsev V, Dobricic S, Bonaduce A., 2015. Mediterranean Sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: a retrospective analysis. Prog Oceanogr. 132:318–332. ISSN 0079-6611. doi:10.1016/j.pocean.2013.11.003
Schroeder K, Chiggiato J, Bryden HL, Borghini M, Ismail SB., 2016. Abrupt climate shift in the Western Mediterranean Sea. Sci Rep. 6:L08707. doi:10.1038/srep23009
Schroeder K, Chiggiato J, Josey SA, Borghini M, Aracri S, Sparnocchia S., 2017. Rapid response to climate change in a marginal sea. Sci Rep. 7(1):4065. doi:10.1038/s41598-017-04455-5
Schroeder K, Gasparini GP, Tangherlini M, Astraldi M., 2006. Deep and intermediate water in the western Mediterranean under the influence of the eastern Mediterranean transient. Geophys Res Lett. 33. doi:10.1028/2006GL02712
Schroeder K, Millot C, Bengara L, Ben Ismail S, Bensi M, Borghini M, Budillon G, Cardin V, Coppola L, Curtil C, et al. 2013. Long-term monitoring programme of the hydrological variability in the Mediterranean Sea: a first overview of the HYDROCHANGES network. Ocean Sci. 9:301–324. doi:10.5194/os-9-301-2013
Schroeder K, Ribotti A, Borghini M, Sorgente R, Perilli A, Gasparini GP., 2008. An extensive western Mediterranean deep water renewal between 2004 and 2006. Geophys Res Lett. 35(18):L18605. doi:10.1029/2008GL035146
Simoncelli S, Fratianni C, Pinardi N, Grandi A, Drudi M, Oddo P, Dobricic S., 2014. Mediterranean Sea physical reanalysis (MEDREA 1987-2015) (Version 1) [dataset]. Copernicus Monitoring Environment Marine Service (CMEMS). doi: 10.25423/medsea_reanalysis_phys_006_004
Simoncelli S, Masina S, Axell L, Liu Y, Salon S, Cossarini G, Bertino L, Xie J, Samuelsen A, Levier B, et al. 2016. MyOcean regional teanalyses: overview of reanalyses systems and main results. Mercator Ocean J 54: Special issue on main outcomes of the MyOcean2 and MyOcean follow-on projects. https://www.mercator-ocean.fr/wp-content/uploads/2016/03/JournalMO-54.pdf
Smith RO, Bryden HL, Stansfield K., 2008. Observations of new western Mediterranean deep water formation using Argo floats 2004-2006. Ocean Sci. 4(2):133–149. doi: 10.5194/os-4-133-2008
Somot S, Houpert L, Sevault F, Testor P, Bosse A, Taupier-Letage I, Bouin MN, Waldman R, Cassou C, Sanchez-Gomez E, et al. 2016. Characterizing, modelling and understanding the climate variability of the deep water formation in the North-Western Mediterranean Sea. Clim Dyn. 1–32. doi:10.1007/s00382-016-3295-0
The LIWEX Group. 2003. The Levantine intermediate water experiment (LIWEX) group: Levantine Basin. A laboratory for multiple water mass formation processes. J Geophys Res. 108(C9):89. doi:10.1029/2002JC001643
Theocharis A, Krokos G, Velaoras D, Korres G., 2014. An internal mechanism driving the alternation of the Eastern Mediterranean dense/deep water sources. In: G.L.E., Borzelli, M., Gačić, P., Lionello, P., Malanotte-Rizzoli, editor. The Mediterranean Sea: temporal variability and spatial patterns. AGU geophysical monograph series, 202. Oxford: John Wiley & Sons., Inc.; p. 113–137
Tziperman E, Speer K., 1994. A study of water mass transformation in the Mediterranean Sea: analysis of climatological data and a simple three-box model. Dyn Atmos Oceans. 21(2):53–82. ISSN 0377-0265. doi:10.1016/0377-0265(94)90004-3
Velaoras D, Krokos G, Nittis K, Theocharis A., 2014. Dense intermediate water outflow from the Cretan Sea: a salinity driven, recurrent phenomenon, connected to thermohaline circulation changes. J Geophys Res Oceans. 119:4797–4820. doi:10.1002/2014JC009937
Verri G, Pinardi N, Oddo P, Ciliberti S, Coppini G., 2017. River runoff influences on the central Mediterranean overturning circulation. Clim Dyn. 1–29. doi:10.1007/s00382-017-3715-9
Vilibić I, Šantić D., 2008. Deep water ventilation traced by Synechococcus cyanobacteria. Ocean Dyn 58:119–125. doi:10.1007/s10236-008-0135-8
Von Schuckmann K, Le Traon P-Y, Alvarez-Fanjul E, Axell L, Balmaseda M, Breivik LA, Brewin RJW, Bricaud C, Drevillon M, Drillet Y, et al. 2016. The Copernicus Marine Environment Monitoring Service ocean state report. JOper Oceanogr. 9(2):s235–s320
Borghini M, Bryden H, Schroeder K, Sparnocchia S, Vetrano A., 2014. The Mediterranean is becoming saltier. Ocean Sci. 10:693–700. http://www.ocean-sci.net/10/693/2014/. doi: 10.5194/os-10-693-2014
García Lafuente J, Delgado J, Sánchez Román A, Soto J, Carracedo L, Díaz del Río G., 2009. Interannual variability of the Mediterranean outflow observed in Espartel sill, western Strait of Gibraltar. J Geophys Res Ocean. 114:3457. doi: 10.1029/2009JC005496
López-Jurado JL, González-Pola C, Vélez-Belchí P., 2005. Observation of an abrupt disruption of the long-term warming trend at the Balearic Sea, western Mediterranean Sea, in summer 2005. Geophys Res Lett. 32. doi: 10.1029/2005GL024430
Medoc G., 1970. Observation of formation of deep water in the Mediterranean Sea, 1969. Nature. 227:1037–1040. doi:10.1038/2271037a0
Naranjo C, García-Lafuente J, Sammartino S, Sánchez‐Garrido JC, Sánchez‐Leal R, Jesús Bellanco M., 2017. Recent changes (2004–2016) of temperature and salinity in the Mediterranean outflow. Geophys Res Lett. 44:5665–5672. doi:10.1002/2017GL072615
Sammartino S, García Lafuente J, Naranjo C, Sánchez Garrido JC, Sánchez Leal R, Sánchez Román A., 2015. Ten years of marine current measurements in Espartel Sill, Strait of Gibraltar. J Geophys Res Ocean. 120. doi: 10.1002/2014JC010674
Schroeder K, Chiggiato J, Bryden HL, Borghini M, Ben Ismail S., 2016. Abrupt climate shift in the Western Mediterranean Sea. Sci Rep. 6:23009. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4786855/. doi: 10.1038/srep23009
Schroeder K, Ribotti A, Borghini M, Sorgente R, Perilli A, Gasparini GP., 2008. An extensive western Mediterranean deep water renewal between 2004 and 2006. Geophys Res Lett. 35:L18605. doi:10.1029/2008GL035146
Simoncelli S, Fratianni C, Pinardi N, Grandi A, Drudi M, Oddo P, Dobricic S., 2014. Mediterranean Sea physical reanalysis (MEDREA 1987-2015) (version 1) [dataset]. Copernicus Monitoring Environment Marine Service (CMEMS). doi:10.25423/medsea_reanalysis_phys_006_004
Zunino P, Schroeder K, Vargas-Yáñez M, Gasparini GP, Coppola L, García-Martínez MC, Moya-Ruiz F., 2012. Effects of the Western Mediterranean transition on the resident water masses: pure warming, pure freshening and pure heaving. J Mar Syst. 96:15–23. http://www.sciencedirect.com/science/article/pii/S0924796312000280. doi: 10.1016/j.jmarsys.2012.01.011
Capet A, Stanev E, Beckers JM, Murray J, Grégoire M., 2016. Decline of the Black Sea oxygen inventory. Biogeosciences. 13:1287–1297. doi: 10.5194/bg-13-1287-2016
Capet A, Troupin C, Carstensen J, Grégoire M, Beckers JM., 2014. Untangling spatial and temporal trends in the variability of the Black Sea cold intermediate layer and mixed layer depth using the DIVA detrending procedure. Oce Dyn. 64(3):315–324. doi: 10.1007/s10236-013-0683-4
Garcia HE, Locarnini RA, Boyer TP, Antonov JI, Mishonov AV, Baranova OK, Zweng MM, Reagan JR, Johnson JR., 2013. World Ocean Atlas 2013. Vol. 3: dissolved oxygen, apparent oxygen utilization, and oxygen saturation. S. Levitus, editor; Mishonov A, Technical editors. NOAA Atlas NESDIS 75, 27 pp
Jaccard P, Norli M, Ledang AB, Hjermann DØ, Reggiani E R, Sørensen K, Wehde H, Kaitala S, Folkestad A., 2015. Real time quality control of biogeochemical measurements, version 2.5. My Ocean document
Konovalov S, Murray JW., 2001. Variations in the chemistry of the Black Sea on a time scale of decades (1960–1995). J Marine Syst. 31:217–243. doi: 10.1016/S0924-7963(01)00054-9
Murray J, Jannasch H, Honjo S, Anderson R, Reeburgh W, Top Z, Friederich G, Codispoti L, Izdar E., 1989. Unexpected changes in the oxic/anoxic interface in the Black Sea. Nature. 338:411–413. doi: 10.1038/338411a0
Ostrovskii A, Zatsepin A., 2011. Short-term hydrophysical and biological variability over the northeastern Black Sea continental slope as inferred from multiparametric tethered profiler surveys. Ocean Dyn. 61:797–806. doi: 10.1007/s10236-011-0400-0
Özsoy E, Ünlüata Ü. 1997. Oceanography of the Black Sea: a review of some recent results. Earth Sci Rev. 42(4):231–72. doi: 10.1016/S0012-8252(97)81859-4
Schmechtig C, Thierry V, and the Bio Argo Team. 2015. Argo quality control manual for biogeochemical data. doi:10.13155/40879
Stanev E, He Y, Grayek S, Boetius A., 2013. Oxygen dynamics in the Black Sea as seen by Argo profiling floats. Geophys Res Lett. 40(12):3085–3090. doi: 10.1002/grl.50606
Stramma L, Prince ED, Schmidtko S, Luo J, Hoolihan JP, Visbeck M, Wallace DW, Brandt P, Körtzinger A., 2012. Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes. Nat Clim Change. 2(1):33–7. doi: 10.1038/nclimate1304
Tugrul S, Basturk O, Saydam C, Yilmaz A., 1992. Changes in the hydrochemistry of the Black Sea inferred from water density profiles. Nature. 359:137–139. doi: 10.1038/359137a0
Lass HU, Matthäus W., 1996. On temporal wind variations forcing salt water inflows into the Baltic Sea. Tellus A. 48:663–671. doi: 10.3402/tellusa.v48i5.12163
Lehmann A, Höflich K, Post P, Myrberg K., 2017. Pathways of deep cyclones associated with large volume changes (LVCs) and major Baltic inflows (MBIs). J Mar Syst. 167:11–18. doi: 10.1016/j.jmarsys.2016.10.014
Lessin G, Raudsepp U, Stips A., 2014. Modelling the influence of major Baltic inflows on near-bottom conditions at the entrance of the Gulf of Finland. PLoS ONE. 9(11):e112881. doi: 10.1371/journal.pone.0112881
Matthäus W, Franck H., 1992. Characteristics of major Baltic inflows–a statistical analysis. Cont Shelf Res. 12:1375–1400. doi: 10.1016/0278-4343(92)90060-W
Mohrholz V, Naumann M, Nausch G, Krüger S, Gräwe U., 2015. Fresh oxygen for the Baltic Sea–an exceptional saline inflow after a decade of stagnation. J Mar Syst. 148:152–166. doi: 10.1016/j.jmarsys.2015.03.005
Myllykangas J-P, Jilbert T, Jakobs G, Rehder G, Werner J, Hietanen S., 2017. Effects of the 2014 major baltic inflow on methane and nitrous oxide dynamics in the water column of the Central Baltic Sea. Earth Syst Dynam Discuss. doi:10.5194/esd-2017-14
Neumann T, Radtke H, Seifert T., 2017. On the importance of Major Baltic Inflows for oxygenation of the central Baltic Sea. J Geophys Res Oceans. 122:1090–1101. doi: 10.1002/2016JC012525
Raudsepp U, Axell L, Almoroth-Rosell E, Viktorsson L., 2016. Baltic Sea. In: von Schuckmann K. et al. 2016. The Copernicus Marine Environment Monitoring Service ocean state report. J Oper Oceanogr. 9 Suppl:S235–320
Schimanke S, Dieterich C, Meier HEM., 2014. An algorithm based on sea-level pressure fluctuations to identify major Baltic inflow events. Tellus A. 66:21. doi: 10.3402/tellusa.v66.23452
Schinke H, Matthäus W., 1998. On the causes of major Baltic inflows–an analysis of long time series. Cont Shelf Res. 18:67–97. doi: 10.1016/S0278-4343(97)00071-X
Brewin R, Sathyendranath S, Müller D, Brockmann C, Deschamps P-Y, Devred E, Doerffer R, Fomferra N, Franz B, Grant M, et al. 2015. The ocean colour climate change initiative: III. A round-robin comparison on in-water bio-optical algorithms. Remote Sens. Environ. 162:271–294. doi: 10.1016/j.rse.2013.09.016
Carstensen J, Sanchez-Camacho M, Duarte CM, Krause-Jensen D, Marbà N., 2011. Connecting the dots: responses of coastal ecosystems to changing nutrient concentrations. Environ Sci Technol. 45:9122–9132. doi: 10.1021/es202351y
Funkey CP, Conley DJ, Reuss NS, Humborg C, Jilbert T, Slomp CP., 2014. Hypoxia sustains cyanobacteria blooms in the Baltic Sea. Environ Sci Technol 48:2598–2602. doi: 10.1021/es404395a
Hansen JLS, Bendtsen J., 2013. Parameterisation of oxygen dynamics in the bottom water of the Baltic Sea-north Sea transition zone’. Mar Ecol Prog Ser. 481:25–39. doi:10.3354/meps10220
Hansson M, Håkansson B., 2007. The Baltic algae watch system–a remote sensing application for monitoring cyanobacterial blooms in the Baltic Sea. J Appl Remote Sens 1. doi: 10.1117/1.2834769
Hansson M, Pamberton P, Hakansson B, Reinart A, Alikas K., 2010, December. Operational nowcasting of algal blooms in the Baltic Sea using MERIS and MODIS. ESA Living Planet Symposium, Vol. 686
[HELCOM] Helsinki Convention on the Protection of the Marine Environment of the Baltic Sea Area. 2009. Eutrophication in the Baltic Sea–an integrated thematic assessment of the effects of nutrient enrichment in the Baltic Sea region. Baltic Sea Environment Proceedings 115B:148
[HELCOM] Helsinki Convention on the Protection of the Marine Environment of the Baltic Sea Area. 2014. Eutrophication status of the Baltic Sea 2007-2011–a concise thematic assessment. Baltic Sea Environment Proceedings No. 143. http://helcom.fi/Lists/Publications/BSEP143.pdf
Kabel K, Moros M, Porsche C, Neumann T, Adolphi F, Andersen TJ, Siegel H, Gerth M, Leipe T, Jansen E, Sinninghe Damsté JS., 2012. Impact of climate change on the health of the Baltic Sea ecosystem over the last 1000 years. Nat Clim Change. doi:10.1038/nclimate1595
Öberg J., 2016. Cyanobacteria blooms in the Baltic Sea. HELCOM Baltic Sea Environment Fact Sheets 2016
O'Reilly JE, Maritorena S, Mitchell BG, Siegel DA, Carder KL, Garver SA, Kahru M, McClain C., 1998. Ocean color chlorophyll algorithms for SeaWiFS. J Geophys Res. 103(C11):24937–24954. doi: 10.1029/98JC02160
Section 4.1
Årthun M, Eldevik T., 2016. On anomalous ocean heat transport toward the Arctic and associated climate predictability. J Clim. 29:689–704. doi: 10.1175/JCLI-D-15-0448.1
Årthun M, Eldevik T, Smedsrud LH, Skagseth Ø, Ingvaldsen RB., 2012. Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat. J Clim. 25:4736–4743. doi: 10.1175/JCLI-D-11-00466.1
Chafik L, Nilsson J, Skagseth Ø, Lundberg P., 2015. On the flow of Atlantic water and temperature anomalies in the Nordic Seas toward the Arctic Ocean. J Geophys Res. 120:7897–7918. doi: 10.1002/2015JC011012
Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, et al. 2011. The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc. 137(656):553–597. doi: 10.1002/qj.828
Hátún H, Hansen B, Sandø AB, Drange H, Valdimarsson H. 2005. De-stabilization of the North Atlantic thermohaline circulation by a gyre mode. Science. 309:1841–1844. doi:10.1126/science.1114777
Holland MM, Blanchard-Wrigglesworth E, Kay J, Vavrus S., 2013. Initial-value predictability of Antarctic sea ice in the community climate system model 3. Geophys Res Lett. 40(10):2121–2124. doi: 10.1002/grl.50410
ICES. 2017. Report of the working group on the integrated assessments of the Barents Sea. WGIBAR 2017 Report 16–18 March 2017. Murmansk, Russia. ICES CM 2017/SSGIEA:04. 186 pp
Ivanov V, Alexeev VA, Koldunov NV, Repina I, Sandø AB, Smedsrud LH, Smirnov A., 2015. Arctic Ocean heat impact on regional ice decay–a suggested positive, feedback. J Phys Oceanogr. doi: 10.1175/JPO-D-15-0144.1
Larsen KMH, Gonzales-Pola C, Fratantoni P, Beszczynska-Möller A, Hughes SL, editors. 2016. ICES report on ocean climate 2015. ICES Cooperative Research Report No. 331. 79pp
Li C, Stevens B, Marotzke J., 2015. Eurasian winter cooling in the warming hiatus of 1998–2012. Geophys Res Lett. 42:8131–8139. doi: 10.1002/2015GL065327
Lien VS, Schlichtholz P, Skagseth Ø, Vikebø FB., 2017. Wind-driven Atlantic water flow as a direct mode for reduced Barents Sea ice cover. J Clim. 30:803–812. doi: 10.1175/JCLI-D-16-0025.1
Lien VS, Vikebø FB, Skagseth Ø. 2013. One mechanism contributing to co-variability of the Atlantic inflow branches to the Arctic. Nat Commun. 4:1533. doi: 10.1038/ncomms2505
Mori M, Watanabe M, Shiogama H, Inoue J, Kimoto M., 2014. Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat Geosci. 7:869–873. doi: 10.1038/ngeo2277
Nilsen JEØ, Gao Y, Drange H, Furevik T, Bentsen M., 2003. Simulated North Atlantic–Nordic seas water mass exchanges in an isopycnic coordinate OGCM. Geophys Res Lett. 30(10):1536. doi: 10.1029/2002GL016597
Onarheim IH, Eldevik T, Årthun M, Ingvaldsen RB, Smedsrud LH., 2015. Skillful prediction of Barents Sea ice cover. Geophys Res Lett. 42(13):5364–5371. doi: 10.1002/2015GL064359
Perovich DK, Richter-Menge JA, Jones KF, Light B., 2008. Sunlight, water, and ice: extreme Arctic sea ice melt during the summer of 2007. Geophys Res Lett. 35(11):2–5. doi: 10.1029/2008GL034007
Petoukhov V, Semenov VA., 2010. A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J Geophys Res. 115:890. doi: 10.1029/2009JD013568
Polyakov IV, Pnyushkov AV, Alkire MB, Ashik IM, Baumann TM, Carmack EC, Goszczko I, Guthrie J, Ivanov VV, Kanzow T, Krishfield R, Kwok R, Sundfjord A, Morison J, Rember R, Yulin A., 2017. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science. doi: 10.1126/science.aai8204
Raphael MN., 2004. A zonal wave 3 index for the Southern Hemisphere. Geophys Res Lett. 31(23):1–4. doi: 10.1029/2004GL020365
Raphael MN., 2007. The influence of atmospheric zonal wave three on Antarctic sea ice variability. J Geophys Res Atmos. 112(12):1–9. doi: 10.1029/2006JD007852
Sandø AB, Nilsen JEØ, Eldevik T, Bentsen M., 2012. Mechanisms for variable North Atlantic-Nordic Seas exchanges. J Geophys Res Oceans. 117:C12006. doi: 10.1029/2012JC008177
Sandø AB, Nilsen JEØ, Gao Y, Lohmann K., 2010. Importance of heat transport and local air-sea heat fluxes for the Barents Sea climate variability. J Geoph Res Oceans. 115:C07013. doi: 10.1029/2009JC005884
Schlichtholz P., 2014. Local wintertime tropospheric response to oceanic heat anomalies in the Nordic Seas area. J Clim. 27:8686–8706. doi: 10.1175/JCLI-D-13-00763.1
Schlichtholz P., 2016. Empirical relationships between summertime oceanic heat anomalies in the Nordic seas and large-scale atmospheric circulation in the following winter. Clim Dyn. 47:1735–1753. doi: 10.1007/s00382-015-2930-5
Screen JA, Simmonds I, Deser C, Tomas R., 2013. The atmospheric response to three decades of observed Arctic sea ice loss. J Clim. 26:1230–1248. doi: 10.1175/JCLI-D-12-00063.1
Skagseth Ø, Tore F, Randi I, Harald L, Kjell AM, Kjell AO, Vladimir O., 2008. Volume and heat transports to the Arctic Ocean via the Norwegian and Barents Seas. In: Dickson R, Meincke J, Rhines P, editors. Arctic Subarctic ocean fluxes: defining the role of the Northern Seas in climate. New York: Springer; p. 45–64
Tietsche S, Mayer M, Balmaseda MA, Zuo H., 2017. The 2016/17 record melt of Antarctic sea ice in ECMWF atmospheric and oceanic reanalyses. Poster in the Polar Prediction Workshop
Toole JM, Timmermans ML, Perovich DK, Krishfield RA, Proshutinsky A, Richter-Menge JA., 2010. Influences of the ocean surface mixed layer and thermohaline stratification on Arctic Sea ice in the central Canada Basin. J Geophys Res. 115(C10):2359. doi: 10.1029/2009JC005660
Underhill V, Fetterer F., 2012. Arctic Sea ice charts from Danish Meteorological Institute, 1893–1956, Version 1. Boulder, CO: National Snow and Ice Datacenter
Woodgate RA, Weingartner TJ, Lindsay R., 2012. Observed increases in Bering Strait oceanic fluxes from the Pacific to the Arctic from 2001 to 2011 and their impacts on the Arctic Ocean water column. Geophys Res Lett. 39:L24603. doi: 10.1029/2012GL054092
Yang X-Y, Yuan X, Ting M., 2016. Dynamical link between the Barents-Kara Sea ice and the Arctic oscillation. J Clim. 29:5103–5122. doi: 10.1175/JCLI-D-15-0669.1
Yuan X., 2004. ENSO-related impacts on Antarctic sea ice: a synthesis of phenomenon and mechanisms. Antarct Sci. 16(4):415–425. doi: 10.1017/S0954102004002238
Yuan X, Martinson DG., 2000. Antarctic sea ice extent variability and its global connectivity. Journal of Climate. 13:1697–1717
Zuo H, Balmaseda MA, Boisseson E, Hirahara S, Chrust M, Rosnay P., 2017. A generic ensemble generation scheme for data assimilation and ocean analysis. ECMWF Tech Memo. 795
Zuo H, Balmaseda, MA, Mogensen K, Tietsche S., 2018. OCEAN5: the ECMWF Ocean Reanalysis System and its Real-Time analysis component. ECMWF Tech Memo. 823
Section 4.2
Chanut J, Barnier B, Large W, Debreu L, Penduff T, Molines JM, Mathiot P., 2008. Mesoscale eddies in the Labrador Sea and their contribution to convection and restratification. J Phys Oceanogr. 38(8):1617–1643. doi: 10.1175/2008JPO3485.1
Deshayes J, Frankignoul C, Drange H., 2007. Formation and export of deep water in the Labrador and Irminger Seas in a GCM. Deep-Sea Res I: Oceanogr Res Pap. 54(54):510–532. doi: 10.1016/j.dsr.2006.12.014
Katsman CA, Spall MA, Pickart RS., 2004. Boundary current eddies and their role in the restratification of the Labrador Sea. J Phys Oceanogr. 34:1967–1983. doi: 10.1175/1520-0485(2004)034<1967:BCEATR>2.0.CO;2
Kuhlbrodt T, Griesel A, Montoya M, Levermann A, Hofmann M, Rahmstorf S., 2007. On the driving processes of the Atlantic meridional overturning circulation. Rev Geophys. 45:1424. doi: 10.1029/2004RG000166
Lilly JM, Rhines PB, Schott F, Lavender K, Lazier J, Send U, D’Asaro E., 2003. Observations of the Labrador Sea eddy field. Prog Oceanogr. 59(1):75–176. doi: 10.1016/j.pocean.2003.08.013
Lilly JM, Rhines PB, Visbeck M, Davis R, Lazier JRN, Schott F, Farmer D., 1999. Observing deep convection in the Labrador Sea during winter 1994/95. J Phys Oceanogr. 29:2065–2098. doi: 10.1175/1520-0485(1999)029<2065:ODCITL>2.0.CO;2
Straneo F., 2006. Heat and freshwater transport through the central Labrador Sea. J Phys Oceanogr. 36:606–628. doi: 10.1175/JPO2875.1
Terray L., 2012. Evidence for multiple drivers of North Atlantic multi-decadal climate variability. Geophys Res Lett. 39(L19712). doi: 10.1029/2012GL053046
Yashayaev I, Loder JW., 2016. Recurrent replenishment of Labrador Sea Water and associated decadal-scale variability. J Geophys Res Oceans. 121(11):8095–8114. doi: 10.1002/2016JC012046
Section 4.3
Aagaard K, Roach AT, Moritz RE, Schweiger AJ., 1996. Ice export from the Arctic Ocean, 1991–1994. In: Wilburn AM, editor. The Atlantic climate change program, proceedings from the principal investigators meeting. Woods Hole, MA: WHOI; p. 1–5
Belkin IM., 2004. Propagation of the ‘great salinity anomaly’ of the 1990s around the northern North Atlantic. Geophys Res Lett. 31(8):28317. doi: 10.1029/2003GL019334
Belkin IM, Levitus S, Antonov J, Malmberg SA., 1998. ‘Great salinity anomalies’ in the North Atlantic. Prog Oceanogr. 41(1):1–68. doi: 10.1016/S0079-6611(98)00015-9
Bower AS, von Appen WJ., 2008. Interannual variability in the pathways of the North Atlantic current over the Mid-Atlantic Ridge and the impact of topography. J Phys Oceanogr. 38:104–120. doi: 10.1175/2007JPO3686.1
Deser C, Timlin MS., 1996. Decadal variations in sea ice and sea surface temperature in the subpolar North Atlantic. In: Wilburn AM, editor. The Atlantic climate change program, proceedings from the principal investigators meeting, May 14–16. Woods Hole, MA: WHOI; p. 36–40
Dickson RR, Meincke J, Malmberg SA, Lee AJ., 1988. The ‘great salinity anomaly’ in the northern North Atlantic 1968–1982. Prog Oceanogr. 20(2):103–151. doi: 10.1016/0079-6611(88)90049-3
Dooley HD, Martin JHA, Ellett DJ., 1984. Abnormal hydrographic conditions in the Northeast Atlantic during the 1970s. Rapp PV Reun Cons Int Explor Mer. 185:179–187
Drinkwater KF., 1994. Climate and oceanographic variability in the Northwest Atlantic during the 1980s and early 1990s. NAO SCR Doc. 94(71):39
Ellett DJ, MacDougall N., 1983. Some monitoring results from west of Britain. IOC Techn Ser Rept. 24:21–25
Flatau MK, Talley L, Niiler PP., 2003. The North Atlantic Oscillation, surface current velocities, and SST changes in the subpolar North Atlantic. J Clim. 16(14):2355–2369. doi: 10.1175/2787.1
Foukal NP, Susan Lozier M., 2017. Assessing variability in the size and strength of the North Atlantic subpolar gyre. J Geophys Res Oceans. 122:6295–6308. doi: 10.1002/2017JC012798
Frankignoul C, Deshayes J, Curry R., 2009. The role of salinity in the decadal variability of the North Atlantic meridional overturning circulation. Clim Dyn. 33(6):777–793. doi: 10.1007/s00382-008-0523-2
Häkkinen S, Rhines PB., 2004. Decline of subpolar North Atlantic circulation during the 1990s. Science. 304(5670):555–559. doi: 10.1126/science.1094917
Hakkinen S, Rhines PB., 2009. Shifting surface currents in the northern North Atlantic Ocean. J Geophys Res Oceans. 114(C4). doi:10.1029/2008JC004883
Henson B., 2016. The North Atlantic blob: a marine cold wave that won’t go away. WunderBlog, Weather Underground. https://www.wunderground.com/blog/JeffMasters/the-north-atlantic-blob-a-marine-cold-wave-that-wont-go-away.html
Lazier J, Hendry R, Clarke A, Yashayaev I, Rhines P., 2002. Convection and restratification in the Labrador Sea, 1990–2000. Deep-Sea Res I Oceanogr Res Pap. 49(10):1819–1835. doi: 10.1016/S0967-0637(02)00064-X
Martin JHA, Dooley HD, Shearer W., 1984. Ideas on the origin and biological consequences of the 1970’s salinity anomaly. ICES CM 1984. Gen, 18
NASA. 2016. See http://www.climateplus.info/2016/10/23/global-temperature-the-north-atlantic-cold-blob-and-the-gulf-stream/
Ortega P., 2017. An update on the North Atlantic cold blob (January 2017). Weather and Climate at Reading, http://blogs.reading.ac.uk/weather-and-climate-at-reading/2017/an-update-on-the-north-atlantic-cold-blob-january-2017/
Prinsenberg SJ, Peterson IK, Narayanan S, Umoh JU., 1997. Interaction between atmosphere, ice cover, and ocean off Labrador and Newfoundland from 1962 to 1992. Can J Fish Aquat Sci. 54(S1):30–39. doi: 10.1139/f96-150
Rahmstorf S, Box JE, Feulner G, Mann ME, Robinson A, Rutherford S, Schaffernicht EJ., 2015. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat Clim Change. 5(5):475–480. doi: 10.1038/nclimate2554
Robson J, Sutton R, Lohmann K, Smith D, Palmer MD., 2012. Causes of the rapid warming of the North Atlantic Ocean in the mid-1990s. J Clim. 25(12):4116–4134. doi: 10.1175/JCLI-D-11-00443.1
Yashayaev I, van Aken HM, Holliday NP, Bersch M., 2007. Transformation of the Labrador Sea Water in the subpolar North Atlantic. Geophys Res Lett. 34(22):L13614. doi: 10.1029/2007GL031812
Section 4.4
Demirov E, Pinardi N., 2002. Simulation of the Mediterranean Sea circulation from 1979 to 1993: Part I. The interannual variability. J Mar Syst. 33-34:23–50. doi: 10.1016/S0924-7963(02)00051-9
Gačić M, Eusebi Borzelli GL, Civitarese G, Cardin V, Yari S., 2010. Can internal processes sustain reversals of the ocean upper circulation? The Ionian Sea example. J Geophys Res Letters. 37(L09608):1–5
Gačić M, Civitarese G, Eusebi Borzelli GL, Kovačević V, Poulain PM, Theocharis A, Menna M, Catucci A, Zarokanellos N., 2011. On the relationship between the decadal oscillations of the northern Ionian Sea and the salinity distributions in the eastern Mediterranean. J Geophys Res. 116(C12002):1–9
Giorgetti A., 1999. Climatological analysis of the Adriatic Sea thermohaline characteristics. B Geofis Teor Appl. 40(1):53–73
Zore-armanda M., 1969. Water exchange between the Adriatic and the Eastern Mediterranean. Deep-Sea Res PTI. 16:171–178
Zore-Armanda M., 1972. Response of the Mediterranean to the oceanographic/meteorological conditions of the Northern Atlantic. Rapp Comm Int Mer Médit. 21:203–205
Section 4.5
[HELCOM] Helsinki Convention on the Protection of the Marine Environment of the Baltic Sea Area. 2013. Climate change in the Baltic Sea Area - HELCOM thematic assessment in 2013. Baltic Sea Environment Proceedings No. 137
Wolski T, Winiewski B, Giza A, KowalewskaKalkowska H, Boman H, Grabbi-Kaiv S, Hammarklint T, Holfort J, Lydeikait Ž. 2014. Extreme sea levels at selected stations on the Baltic Sea coast. Oceanologia. 56(2):259–290. doi: 10.5697/oc.56-2.259