Midtvedt K, Fauchald P, Lien B, Hartmann A, Albrechtsen D, Bjerkely BL, et al. Individualized T cell monitored administration of ATG versus OKT3 in steroid-resistant kidney graft rejection. Clin Transplant. (2003) 17:69-74. doi: 10.1034/j.1399-0012.2003.02105.x PubMed Abstract | CrossRef Full Text | Google Scholar
Smith S. Ten years of Orthoclone OKT3 (muromonab-CD3): a review. J Transpl Coord (1996) 6:109-21. doi: 10.7182/prtr.1.6.3.8145l3u185493182 PubMed Abstract | CrossRef Full Text | Google Scholar
Feldmann M, Maini RN. Anti -TNFα therapy of rheumathoid arthritis: what have we learned? Annu rev Immunol. (2001) 19:163-96. doi: 10.1146/annurev.immunol.19.1.163 CrossRef Full Text | Google Scholar
Kunik V, Peters B, Ofran Y. Structural consensus among antibodies defines the antigen binding site. PLoS Comput Biol. (2012) 8:e1002388. doi: 10.1371/journal.pcbi.1002388 PubMed Abstract | CrossRef Full Text | Google Scholar
Robin G, Sato Y, Desplancq D, Rochel N, Weiss E, Martineau P. Restricted diversity of antigen binding residues of antibodies revealed by computational alanine scanning of 227 antibody-antigen complexes. J Mol Biol. (2014) 426:3729-3743. doi: 10.1016/j.jmb.2014.08.013 PubMed Abstract | CrossRef Full Text | Google Scholar
MacCallum RM, Martin a C, Thornton JM. Antibody-antigen interactions: contact analysis and binding site topography. J Mol Biol. (1996) 262:732-745. doi: 10.1006/jmbi.1996.0548 PubMed Abstract | CrossRef Full Text | Google Scholar
Mitchell LS, Colwell LJ. Comparative analysis of nanobody sequence and structure data. Proteins Struct Funct Bioinforma (2018) 86:697-706. doi: 10.1002/prot.25497 PubMed Abstract | CrossRef Full Text | Google Scholar
Nelson AL. Antibody fragments: Hope and hype. MAbs (2010) 2:77-83. doi: 10.4161/mabs.2.1.10786 PubMed Abstract | CrossRef Full Text | Google Scholar
Nuñez-Prado N, Compte M, Harwood S, Álvarez-Méndez A, Lykkemark S, Sanz L, et al. The coming of age of engineered multivalent antibodies. Drug Discov Today (2015) 20:588-94. doi: 10.1016/j.drudis.2015.02.013 PubMed Abstract | CrossRef Full Text | Google Scholar
Vigne E, Sassoon I. Une liaison réussie entre un anticorps et une petite molécule cytotoxique. La montée en puissance des immunoconjugués en oncologie. Médecine Sci. (2014) 30:855-63. doi: 10.1051/medsci/20143010012 CrossRef Full Text | Google Scholar
Guan M, Zhou Y-P, Sun J-L, Chen S-C. Adverse events of monoclonal antibodies used for cancer therapy. Biomed Res Int. (2015) 2015:1-13. doi: 10.1155/2015/428169 PubMed Abstract | CrossRef Full Text | Google Scholar
Mirick GR, Bradt BM, DeNardo SJ, DeNardo GL. A review of human anti-globulin antibody (HAGA, HAMA, HACA, HAHA) responses to monoclonal antibodies. Not four letter words. Q J Nucl Med Mol Imaging (2004) 48:251-7. Google Scholar
DeNardo GL, Bradt BM, Mirick GR, DeNardo SJ. Human antiglobulin response to foreign antibodies: therapeutic benefit? Cancer Immunol Immunother. (2003) 52:309-16. doi: 10.1007/s00262-002-0350-y PubMed Abstract | CrossRef Full Text | Google Scholar
LoBuglio AF, Wheeler RH, Trang J, Haynes A, Rogers K, Harvey EB, et al. Mouse/human chimeric monoclonal antibody in man: kinetics and immune response. Proc Natl Acad Sci USA. (1989) 86:4220-4. doi: 10.1073/pnas.86.11.4220 PubMed Abstract | CrossRef Full Text | Google Scholar
De Pascalis R, Iwahashi M, Tamura M, Padlan EA, Gonzales NR, Santos AD, et al. Grafting of "Abbreviated" complementarity-determining regions containing specificity-determining residues essential for ligand contact to engineer a less immunogenic humanized monoclonal antibody. J Immunol (2002) 169:3076-84. doi: 10.4049/jimmunol.169.6.3076 CrossRef Full Text | Google Scholar
Jones PT, Dear PH, Foote J, Neuberger MS, Winter G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature (1986) 321:522-25. doi: 10.1038/321522a0 PubMed Abstract | CrossRef Full Text | Google Scholar
Pedersen JT, Henry AH, Searle SJ, Guild BC, Roguska M, Rees AR. Comparison of surface accessible residues in human and murine immunoglobulin Fv domains. Implication for humanization of murine antibodies. J Mol Biol. (1994) 235:959-73. doi: 10.1006/jmbi.1994.1050 PubMed Abstract | CrossRef Full Text | Google Scholar
Padlan EA. A possible procedure for reducing the immunogenicity of antibody variable domains while preserving their ligand-binding properties. Mol Immunol. (1991) 28:489-98. PubMed Abstract | Google Scholar
Tan P, Mitchell D a, Buss TN, Holmes M a, Anasetti C, Foote J. "Superhumanized" antibodies: reduction of immunogenic potential by complementarity-determining region grafting with human germline sequences: application to an anti-CD28. J Immunol. (2002) 169:1119-1125. doi: 10.4049/jimmunol.169.2.1119 PubMed Abstract | CrossRef Full Text | Google Scholar
Lazar G a, Desjarlais JR, Jacinto J, Karki S, Hammond PW. A molecular immunology approach to antibody humanization and functional optimization. Mol Immunol. (2007) 44:1986-98. doi: 10.1016/j.molimm.2006.09.029 PubMed Abstract | CrossRef Full Text | Google Scholar
Jespers LS, Roberts A, Mahler SM, Winter G, Hoogenboom HR. Guiding the selection of human antibodies from phage display repertoires to a single epitope of an antigen. Biotechnology (1994) 12:899-903. PubMed Abstract | Google Scholar
Ahmadzadeh V, Farajnia S, Feizi MAH, Nejad RAK. Antibody humanization methods for development of therapeutic applications. Monoclon Antib Immunodiagn Immunother. (2014) 33:67-73. doi: 10.1089/mab.2013.0080 PubMed Abstract | CrossRef Full Text | Google Scholar
Riechmann L, Clark M, Waldmann H, Winter G. Reshaping human antibodies for therapy. Nature (1988) 332:323-7. doi: 10.1038/332323a0 PubMed Abstract | CrossRef Full Text | Google Scholar
Sela-Culang I, Kunik V, Ofran Y. The structural basis of antibody-antigen recognition. Front Immunol. (2013) 4:302. doi: 10.3389/fimmu.2013.00302 PubMed Abstract | CrossRef Full Text | Google Scholar
Wu TT, Kabat E a. An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. J Exp Med. (1970) 132:211-50. doi: 10.1084/jem.132.2.211 PubMed Abstract | CrossRef Full Text | Google Scholar
Kabat EA, Wu TT. Attempts to locate Complementary-determining residues in the variable positions of light and heavy chains. Ann New York Acad Sci. (1971) 190:382-93. Google Scholar
Capra JD, Kehoe JM. Variable region sequences of five human immunoglobulin heavy chains of the VH3 subgroup: definitive identification of four heavy chain hypervariable regions. Proc Natl Acad Sci USA (1974) 71:845-8. PubMed Abstract | Google Scholar
Kabat EA, Wu TT, Bilofsky H. Unusual distributions of amino acids in complementarity-determining (hypervariable) segments of heavy and light chains of immunoglobulins and their possible roles in specificity of antibody-combining sites. J Biol Chem. (1977) 252:6609-16. PubMed Abstract | Google Scholar
Kabat EA, Te Wu T, Bilofsky H. (U.S.) NI of H. Sequences of Immunoglobulin Chains: Tabulation Analysis of Amino Acid Sequences of Precursors, V-regions, C-regions, J-Chain BP-Microglobulins, 1979. Department of Health, Education, Welfare, Public Health Service, National Institutes of Health (1979). Available online at: https://books.google.com/books?id=OpW8-ibqyvcC
Kabat EA, Te Wu T, Foeller C, Perry HM, Gottesman KS. Sequences of Proteins of Immunological Interest. Diane Publishing Company (1992). Available online at: https://books.google.com/books?id=3jMvZYW2ZtwC Google Scholar
Martin AC. Accessing the Kabat antibody sequence database by computer. Proteins (1996) 25:130-3. 10.1002/(SICI)1097-0134(199605)25:1130::AID-PROT113.0.CO;2-L PubMed Abstract | CrossRef Full Text | Google Scholar
Chothia C, Lesk a M. Canonical structures for the hypervariable regions of immunoglobulins. J Mol Biol. (1987) 196:901-17. doi: 10.1016/0022-2836(87)90412-8 PubMed Abstract | CrossRef Full Text | Google Scholar
Al-Lazikani B, Lesk a M, Chothia C. Standard conformations for the canonical structures of immunoglobulins. J Mol Biol. (1997) 273:927-48. doi: 10.1006/jmbi.1997.1354 PubMed Abstract | CrossRef Full Text | Google Scholar
Chothia C, Lesk AM, Tramontano A, Levitt M, Smith-Gill SJ, Air G, et al. Conformations of immunoglobulin hypervariable regions. Nature (1989) 342:877-83. doi: 10.1038/342877a0 PubMed Abstract | CrossRef Full Text | Google Scholar
Abhinandan KR, Martin ACR. Analysis and improvements to Kabat and structurally correct numbering of antibody variable domains. Mol Immunol. (2008) 45:3832-9. doi: 10.1016/j.molimm.2008.05.022 PubMed Abstract | CrossRef Full Text | Google Scholar
Gelfand IM, Kister a E. Analysis of the relation between the sequence and secondary and three-dimensional structures of immunoglobulin molecules. Proc Natl Acad Sci USA. (1995) 92:10884-8. doi: 10.1073/pnas.92.24.10884 PubMed Abstract | CrossRef Full Text | Google Scholar
Gelfand I, Kister a, Kulikowski C, Stoyanov O. Geometric invariant core for the V(L) and V(H) domains of immunoglobulin molecules. Protein Eng. (1998) 11:1015-25. doi: 10.1089/106652701446143 PubMed Abstract | CrossRef Full Text | Google Scholar
Gelfand IM, Kister a E, Leshchiner D. The invariant system of coordinates of antibody molecules: prediction of the "standard" C alpha framework of VL and VH domains. Proc Natl Acad Sci USA. (1996) 93:3675-8. PubMed Abstract | Google Scholar
Gelfand I, Kister A, Kulikowski C, Stoyanov O. Algorithmic determination of core positions in the VL and VH domains of immunoglobulin molecules. J Comput Biol. (1998) 5:467-77. PubMed Abstract | Google Scholar
Tramontano A, Chothia C, Lesk AM. Structural determinants of the conformations of medium-sized loops in proteins. Proteins (1989) 6:382-94. doi: 10.1002/prot.340060405 PubMed Abstract | CrossRef Full Text | Google Scholar
Giudicelli V, Chaume D, Bodmer J, Müller W, Busin C, Marsh S, et al. IMGT, the international ImMunoGeneTics database. Nucleic Acids Res. (1997) 25:206-11. PubMed Abstract | Google Scholar
Lefranc MP. Unique database numbering system for immunogenetic analysis. Immunol Today (1997) 18:509. doi: 10.1016/S0167-5699(97)01163-8 PubMed Abstract | CrossRef Full Text | Google Scholar
Lefranc M-P, Pommié C, Ruiz M, Giuducelli V, Foulquier E, Truong L, et al. IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev Comp Immunol. (2003) 27:55-77. doi: 10.1016/S0145-305X(02)00039-3 PubMed Abstract | CrossRef Full Text | Google Scholar
Lefranc M-P, Giudicelli V, Ginestoux C, Bosc N, Folch G, Guiraudou D, et al. IMGT-ONTOLOGY for immunogenetics and immunoinformatics. In Silico Biol. (2004) 4:17-29. PubMed Abstract | Google Scholar
Ruiz M, Giudicelli V, Ginestoux C, Stoehr P, Robinson J, Bodmer J, et al. IMGT, the international ImMunoGeneTics database. Nucleic Acids Res. (2000) 28:219-21. doi: 10.1093/nar/28.1.219 PubMed Abstract | CrossRef Full Text | Google Scholar
Ehrenmann F, Kaas Q, Lefranc MP. IMGT/3dstructure-DB and IMGT/domaingapalign: a database and a tool for immunoglobulins or antibodies, T cell receptors, MHC, IgSF and MHcSF. Nucleic Acids Res. (2009) 38:301-7. doi: 10.1093/nar/gkp946 PubMed Abstract | CrossRef Full Text | Google Scholar
Lefranc MP. IMGT collier de perles for the variable (V), constant (C), and groove (G) domains of IG, TR, MH, IgSF, and MhSF. Cold Spring Harb Protoc. (2011) 6:643-51. doi: 10.1101/pdb.ip86 CrossRef Full Text | Google Scholar
Brochet X, Lefranc M-P, Giudicelli V. IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis. Nucleic Acids Res. (2008) 36:W503-8. doi: 10.1093/nar/gkn316 PubMed Abstract | CrossRef Full Text | Google Scholar
Honegger A, Plückthun A. Yet another numbering scheme for immunoglobulin variable domains: an automatic modeling and analysis tool. J Mol Biol. (2001) 309:657-70. doi: 10.1006/jmbi.2001.4662 PubMed Abstract | CrossRef Full Text | Google Scholar
North B, Lehmann A, Dunbrack RLJ. A new clustering of antibody CDR loop conformations. J Mol Biol. (2011) 406:228-56. doi: 10.1016/j.jmb.2010.10.030.A PubMed Abstract | CrossRef Full Text | Google Scholar
Padlan EA. Anatomy of the antibody molecule. Mol Immunol. (1994) 31:169-217. doi: 10.1016/0161-5890(94)90001-9 PubMed Abstract | CrossRef Full Text | Google Scholar
Padlan EA, Abergel C, Tipper JP. Identification of specificity-determining residues in antibodies. FASEB J Off Publ Fed Am Soc Exp Biol. (1995) 9:133-9. PubMed Abstract | Google Scholar
Nam DH, Rodriguez C, Remacle AG, Strongin AY, Ge X. Active-site MMP-selective antibody inhibitors discovered from convex paratope synthetic libraries. Proc Natl Acad Sci USA. (2016) 113:14970-5. doi: 10.1073/pnas.1609375114 PubMed Abstract | CrossRef Full Text | Google Scholar
Stanfield RL, Wilson IA, Smider VV, Biology C, Jolla L, Jolla L, et al. Conservation and diversity in the ultralong third heavy-chain complementarity-determining region of bovine antibodies. Sci Immunol. (2017) 1:1-21. doi: 10.1126/sciimmunol.aaf7962.Conservation CrossRef Full Text | Google Scholar
Ofran Y, Schlessinger A, Rost B. Automated identification of complementarity determining regions (CDRs) reveals peculiar characteristics of CDRs and B cell epitopes. J Immunol. (2008) 181:6230-5. doi: 10.4049/jimmunol.181.9.6230 PubMed Abstract | CrossRef Full Text | Google Scholar
Collis AVJ, Brouwer AP, Martin ACR. Analysis of the antigen combining site: correlations between length and sequence composition of the hypervariable loops and the nature of the antigen. J Mol Biol. (2003) 325:337-54. doi: 10.1016/S0022-2836(02)01222-6 PubMed Abstract | CrossRef Full Text | Google Scholar
Kunik V, Ashkenazi S, Ofran Y. Paratome: an online tool for systematic identification of antigen-binding regions in antibodies based on sequence or structure. Nucleic Acids Res. (2012) 40:521-4. doi: 10.1093/nar/gks480 CrossRef Full Text | Google Scholar
Olimpieri PP, Chailyan A, Tramontano A, Marcatili P. Prediction of site-specific interactions in antibody-antigen complexes: the proABC method and server. Bioinformatics (2013) 29:2285-91. doi: 10.1093/bioinformatics/btt369 PubMed Abstract | CrossRef Full Text | Google Scholar
Jarasch A, Skerra A. Aligning, analyzing, and visualizing sequences for antibody engineering: Automated recognition of immunoglobulin variable region features. Proteins Struct Funct Bioinforma (2017) 85:65-71. doi: 10.1002/prot.25193 PubMed Abstract | CrossRef Full Text | Google Scholar
Martin ACR, Allen J. Bioinformatics tools for antibody engineering. In: Dübel S, editor. Handbook of Therapeutic Antibodies. Weinheim: Wiley-VCH Verlag GmbH (2008). p. 95-117. doi: 10.1002/9783527619740.ch5 CrossRef Full Text | Google Scholar
Ewert S, Honegger A, Pluckthun A. Stability improvement of antibodies for extracellular and intracellular applications: CDR grafting to stable frameworks and structure-based framework engineering. Methods (2004) 34:184-99. doi: 10.1016/j.ymeth.2004.04.007 PubMed Abstract | CrossRef Full Text | Google Scholar
Teplyakov A, Gilliland GL. Canonical structures of short CDR-L3 in antibodies. Proteins Struct Funct Bioinforma (2014) 82:1668-73. doi: 10.1002/prot.24559 PubMed Abstract | CrossRef Full Text | Google Scholar
Tramontano A, Chothia C, Lesk AM. Framework residue 71 is a major determinant of the position and conformation of the second hypervariable region in the VH domains of immunoglobulins. J Mol Biol. (1990) 215:175-82. doi: 10.1016/S0022-2836(05)80102-0 PubMed Abstract | CrossRef Full Text | Google Scholar
Martin a C, Thornton JM. Structural families in loops of homologous proteins: automatic classification, modelling and application to antibodies. J Mol Biol. (1996) 263:800-15. doi: 10.1006/jmbi.1996.0617 PubMed Abstract | CrossRef Full Text | Google Scholar
Kuroda D, Shirai H, Kobori M, Nakamura H. Systematic classification of CDR-L3 in antibodies: Implications of the light chain subtypes and the V L-V H interface. Proteins Struct Funct Bioinforma (2009) 75:139-46. doi: 10.1002/prot.22230 CrossRef Full Text | Google Scholar
Chailyan A, Marcatili P, Cirillo D, Tramontano A. Structural repertoire of immunoglobulin lambda light chains. Proteins (2011) 79:1513-24. doi: 10.1002/prot.22979 PubMed Abstract | CrossRef Full Text | Google Scholar
Morea V, Tramontano A, Rustici M, Chothia C, Lesk AM. Conformations of the third hypervariable region in the VH domain of immunoglobulins. J Mol Biol. (1998) 275:269-94. doi: 10.1006/jmbi.1997.1442 PubMed Abstract | CrossRef Full Text | Google Scholar
Shirai H, Kidera A, Nakamura H. H3-rules : identification of CDR-H3 structures in antibodies. FEBS Lett. (1999) 455:188-97. PubMed Abstract | Google Scholar
Oliva B, Bates PA, Querol E, Aviles FX, Sternberg MJ. Automated classification of antibody complementarity determining region 3 of the heavy chain (H3) loops into canonical forms and its application to protein structure prediction. J Mol Biol. (1998) 279:1193-210. doi: 10.1006/jmbi.1998.1847 PubMed Abstract | CrossRef Full Text | Google Scholar
De Genst E, Handelberg F, Van Meirhaeghe A, Vynck S, Loris R, Wyns L, et al. Chemical basis for the affinity maturation of a camel single domain antibody. J Biol Chem. (2004) 279:53593-601. doi: 10.1074/jbc.M407843200 CrossRef Full Text | Google Scholar
Adolf-Bryfogle J, Xu Q, North B, Lehmann A, Dunbrack RL. PyIgClassify: a database of antibody CDR structural classifications. Nucleic Acids Res. (2015) 43:D432-8. doi: 10.1093/nar/gku1106 PubMed Abstract | CrossRef Full Text | Google Scholar
Dunbar J, Krawczyk K, Leem J, Marks C, Nowak J, Regep C, et al. SAbPred: a structure-based antibody prediction server. Nucleic Acids Res. (2016) 44:W474-8. doi: 10.1093/nar/gkw361 PubMed Abstract | CrossRef Full Text | Google Scholar
Chatellier J, Van Regenmortel MH, Vernet T, Altschuh D. Functional mapping of conserved residues located at the VL and VH domain interface of a Fab. J Mol Biol. (1996) 264:1-6. doi: 10.1006/jmbi.1996.0618 PubMed Abstract | CrossRef Full Text | Google Scholar
Honegger A, Plückthun A. The influence of the buried glutamine or glutamate residue in position 6 on the structure of immunoglobulin variable domains. J Mol Biol. (2001) 309:687-99. doi: 10.1006/jmbi.2001.4664 PubMed Abstract | CrossRef Full Text | Google Scholar
Foote J, Winter G. Antibody framework residues affecting the conformation of the hypervariable loops. J Mol Biol. (1992) 224:487-99. PubMed Abstract | Google Scholar
Chothia C, Novotný J, Bruccoleri R, Karplus M. Domain association in immunoglobulin molecules. The packing of variable domains. J Mol Biol. (1985) 186:651-63. doi: 10.1016/0022-2836(85)90137-8 PubMed Abstract | CrossRef Full Text | Google Scholar
Abhinandan KR, Martin ACR. Analysis and prediction of VH/VL packing in antibodies. Protein Eng Des Sel. (2010) 23:689-97. doi: 10.1093/protein/gzq043 PubMed Abstract | CrossRef Full Text | Google Scholar
Dunbar J, Fuchs A, Shi J, Deane CM. ABangle: Characterising the VH-VL orientation in antibodies. Protein Eng Des Sel. (2013) 26:611-20. doi: 10.1093/protein/gzt020 PubMed Abstract | CrossRef Full Text | Google Scholar
Nakanishi T, Tsumoto K, Yokota A, Kondo H, Kumagai I. Critical contribution of VH-VL interaction to reshaping of an antibody: the case of humanization of anti-lysozyme antibody, HyHEL-10. Protein Sci. (2008) 17:261-70. doi: 10.1110/ps.073156708 PubMed Abstract | CrossRef Full Text | Google Scholar
Bujotzek A, Lipsmeier F, Harris SF, Benz J, Kuglstatter A, Georges G. VH-VL orientation prediction for antibody humanization candidate selection: A case study. MAbs (2016) 8:288-305. doi: 10.1080/19420862.2015.1117720 PubMed Abstract | CrossRef Full Text | Google Scholar
Kuroda D, Shirai H, Kobori M, Nakamura H. Structural classification of CDR-H3 revisited: A lesson in antibody modeling. Proteins Struct Funct Genet. (2008) 73:608-20. doi: 10.1002/prot.22087 PubMed Abstract | CrossRef Full Text | Google Scholar
Vargas-Madrazo E, Paz-García E. An improved model of association for VH-VL immunoglobulin domains: Asymmetries between VH and VL in the packing of some interface residues. J Mol Recognit. (2003) 16:113-20. doi: 10.1002/jmr.613 PubMed Abstract | CrossRef Full Text | Google Scholar
Narayana Bhat T, Bentley GA, Boulot G, Greene MI, Tello D, Dall 'acqua W, et al. Bound water molecules and conformational stabilization help mediate an antigen-antibody association (antigen-andbody complex/three-dimensional structure/enthalpy and entropy of association/hydration). Immunology (1994) 91:1089-93. doi: 10.1073/pnas.91.3.1089 CrossRef Full Text | Google Scholar
Weitzner BD, Kuroda D, Marze N, Xu J, Gray JJ. Blind prediction performance of RosettaAntibody 3.0: Grafting, relaxation, kinematic loop modeling, and full CDR optimization. Proteins Struct Funct Bioinforma (2014) 82:1611-23. doi: 10.1002/prot.24534 PubMed Abstract | CrossRef Full Text | Google Scholar
Liang S, Zheng D, Zhang C, Zacharias M. Prediction of antigenic epitopes on protein surfaces by consensus scoring. BMC Bioinformatics (2009) 10:302. doi: 10.1186/1471-2105-10-302 PubMed Abstract | CrossRef Full Text | Google Scholar
Kulkarni-Kale U, Bhosle S, Kolaskar AS. CEP: A conformational epitope prediction server. Nucleic Acids Res. (2005) 33:168-71. doi: 10.1093/nar/gki460 PubMed Abstract | CrossRef Full Text | Google Scholar
Sweredoski MJ, Baldi P. PEPITO: Improved discontinuous B-cell epitope prediction using multiple distance thresholds and half sphere exposure. Bioinformatics (2008) 24:1459-60. doi: 10.1093/bioinformatics/btn199 PubMed Abstract | CrossRef Full Text | Google Scholar
Moise L, De Groot A, Marcello A, Tassone R, Martin W, Cousens L. Building better biotherapeutics and vaccines by design: EpiVax, Inc., an immunology company. R I Med J. (2013) 96:19-21. PubMed Abstract | Google Scholar
Seeliger D. Development of Scoring Functions for Antibody Sequence Assessment and Optimization. PLoS ONE (2013) 8:e0076909. doi: 10.1371/journal.pone.0076909 PubMed Abstract | CrossRef Full Text | Google Scholar
Chailyan A, Marcatili P, Tramontano A. The association of heavy and light chain variable domains in antibodies: implications for antigen specificity. FEBS J. (2011) 278:2858-66. doi: 10.1111/j.1742-4658.2011.08207.x PubMed Abstract | CrossRef Full Text | Google Scholar