Deep Reinforcement Learning; Temporal Difference Learning
Abstract :
[en] We introduce a novel Deep Reinforcement Learning (DRL) algorithm called Deep
Quality-Value (DQV) Learning. DQV uses temporal-difference learning to train
a Value neural network and uses this network for training a second Quality-value
network that learns to estimate state-action values. We first test DQV’s update rules
with Multilayer Perceptrons as function approximators on two classic RL problems,
and then extend DQV with the use of Deep Convolutional Neural Networks,
‘Experience Replay’ and ‘Target Neural Networks’ for tackling four games of the
Atari Arcade Learning environment. Our results show that DQV learns significantly
faster and better than Deep Q-Learning and Double Deep Q-Learning, suggesting
that our algorithm can potentially be a better performing synchronous temporal
difference algorithm than what is currently present in DRL.
Disciplines :
Computer science
Author, co-author :
Sabatelli, Matthia ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
Louppe, Gilles ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Big Data
Geurts, Pierre ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
Wiering, Marco
Language :
English
Title :
Deep Quality Value (DQV) Learning
Publication date :
07 December 2018
Journal title :
Advances in Neural Information Processing Systems
ISSN :
1049-5258
Publisher :
Morgan Kaufmann Publishers, San Mateo, United States - California