Article (Scientific journals)
Deep Quality Value (DQV) Learning
Sabatelli, Matthia; Louppe, Gilles; Geurts, Pierre et al.
2018In Advances in Neural Information Processing Systems
Peer Reviewed verified by ORBi
 

Files


Full Text
deep-quality-dqv-learning-nips.pdf
Publisher postprint (792.13 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Deep Reinforcement Learning; Temporal Difference Learning
Abstract :
[en] We introduce a novel Deep Reinforcement Learning (DRL) algorithm called Deep Quality-Value (DQV) Learning. DQV uses temporal-difference learning to train a Value neural network and uses this network for training a second Quality-value network that learns to estimate state-action values. We first test DQV’s update rules with Multilayer Perceptrons as function approximators on two classic RL problems, and then extend DQV with the use of Deep Convolutional Neural Networks, ‘Experience Replay’ and ‘Target Neural Networks’ for tackling four games of the Atari Arcade Learning environment. Our results show that DQV learns significantly faster and better than Deep Q-Learning and Double Deep Q-Learning, suggesting that our algorithm can potentially be a better performing synchronous temporal difference algorithm than what is currently present in DRL.
Disciplines :
Computer science
Author, co-author :
Sabatelli, Matthia ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
Louppe, Gilles  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Big Data
Geurts, Pierre  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
Wiering, Marco
Language :
English
Title :
Deep Quality Value (DQV) Learning
Publication date :
07 December 2018
Journal title :
Advances in Neural Information Processing Systems
ISSN :
1049-5258
Publisher :
Morgan Kaufmann Publishers, San Mateo, United States - California
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 15 December 2018

Statistics


Number of views
148 (24 by ULiège)
Number of downloads
110 (12 by ULiège)

Bibliography


Similar publications



Contact ORBi