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Abstract

We introduce a novel Deep Reinforcement Learning (DRL) algorithm called Deep
Quality-Value (DQV) Learning. DQV uses temporal-difference learning to train
a Value neural network and uses this network for training a second Quality-value
network that learns to estimate state-action values. We first test DQV’s update rules
with Multilayer Perceptrons as function approximators on two classic RL problems,
and then extend DQV with the use of Deep Convolutional Neural Networks,
‘Experience Replay’ and ‘Target Neural Networks’ for tackling four games of the
Atari Arcade Learning environment. Our results show that DQV learns significantly
faster and better than Deep Q-Learning and Double Deep Q-Learning, suggesting
that our algorithm can potentially be a better performing synchronous temporal
difference algorithm than what is currently present in DRL.

1 Introduction

In Reinforcement Learning (RL), Temporal-Difference (TD) learning has become a design choice
which is shared among the most successful algorithms that are present in the field [2]. Whether it is
used in a Tabular-RL setting [11, 33], or in combination with a function approximator [28, 30], TD
methods aim to learn a Value function, V , by directly bootstrapping their own experiences at different
time-steps t. This is done with respect to a discount factor, γ , and a reward, r, which allow the
computation of the TD-errors, rt + γV (st+1)−V (s). Since the TD-errors can be computed directly
while interacting with the environment, TD learning algorithms turn out to be a much faster and better
performing alternative, when compared to other RL approaches such as Monte Carlo (MC) learning.
In fact, the latter methods require the RL episodes to end before being able to estimate how to predict
future rewards.

The recent successful marriage between the most popular RL algorithms, and the use of Deep Neural
Networks [16], has highlighted the power of TD-learning methods. Despite having to deal with the
instabilities of a non-linear function approximator, such algorithms have led to remarkable results,
which have made Deep Reinforcement Learning (DRL) one of the most popular fields within Machine
Learning. Temporal-difference learning algorithms have been shown to be very efficient, both when
applied on learning an action-value function [10, 21, 22, 31, 36], and when used in combination with
policy gradient methods [6, 17, 20].

In this work we exploit the powerful capabilities of TD learning by extending a Tabular-RL algorithm,
called QV(λ ) learning [34], so that its update rules can be successfully used in combination with
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Deep Artificial Neural Networks. Furthermore, we take advantage of the most popular strategies
which are known to ensure stability when training DRL algorithms, in order to construct our novel
DRL algorithm called Deep Quality-Value learning.

The structure of this paper is as follows: in Section 2 we present the most important theoretical
concepts of the field of RL, which serve as preliminary knowledge for our novel algorithm presented
in Section 3. We then present the methodological details about the experimental setup of this work in
Section 4 and the results that have been obtained in Section 5. An analysis of the performances of our
algorithm, together with a discussion about the relevance of our work, concludes the paper in Section
6.

2 Preliminaries

Reinforcement Learning (RL) is the branch of Machine Learning in which artificial agents have to
learn an optimal behavior while interacting with a particular environment [27]. An RL problem can
be formalized as a Markov Decision Process (MDP) consisting of a set of possible states, S , and a set
of possible actions A . By choosing an action a ∈A , the agent performs a state transition from state
st at time t to st+1 that is defined by a transition probability distribution p(st+1|st ,at). Associated
to this transition probability there is an immediate reward function, ℜ(st ,at ,st+1), that specifies the
reward rt of being in state st+1 based on the action at that the agent has taken in state st . The agent
chooses which actions to perform based on its policy, which maps every state to a particular action
π : s→ a. If a policy is followed, it is possible to compute for each state its Value (V ):

V π(s) = E

[
∞

∑
k=0

γ
krt+k

∣∣∣∣∣st = s

]
, (1)

which corresponds to the expected cumulative reward that an agent will gain while being in state s,
and by following policy π . The discount factor γ is set between [0,1], when its value is close to 0 the
agent will only consider the rewards that are obtained in an immediate future, while if its value is
close to 1, the agent will also aim to maximize the rewards obtained in a more distant future. Training
an RL agent consists in finding an optimal policy, π∗, which maximizes the expected future reward
from all possible states such that

π
∗(s) = argmax

π

V π(s). (2)

In addition to the V function, there is a second function, Qπ(s,a), which indicates how good or bad it
is to select a particular action a in state s while following policy π . The goal is to find a policy that
maximizes Q, which is known to correspond to satisfying the Bellman equation:

Qπ(st ,at) = ∑
st+1∈S

p(st+1|st ,at)

(
ℜ(st ,at ,st+1)+ γ max

at+1∈A
Qπ(st+1,at+1)

)
. (3)

Once Q is learned, the optimal policy can be easily found by choosing the action that maximizes Q in
each state.

Whether the goal is to learn the V or the Q function, Tabular based RL aims to formulate the different
RL update rules similar to Dynamic Programming algorithms, which makes it possible to exploit the
Markov properties of such rules. However, it is well known that this approach is computationally very
demanding and is only suitable for problems which have a limited state-action space. In order to deal
with more complicated RL problems non parametric function approximators can be used [5]. While
several types of regression algorithms can be used to do so, such as Support Vector Machines [19] or
Tree-based approaches [7], a large popularity has been gained with the use of Deep Artificial Neural
Networks. The combination of RL and Deep Learning has recently made it possible to master RL
problems of the most various domains, ranging from videogames [8, 15, 20, 21, 32], to boardgames
[14, 23, 24] and complex robotics control problems [1, 9, 17].
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3 Deep Quality-Value (DQV) Learning

We now introduce our novel DRL algorithm called Deep Quality-Value (DQV) learning. We first
present the online RL algorithm QV(λ ) together with its update rules, and then extend these update
rules to objective functions that can be used to train Artificial Neural Networks (ANNs) for solving
complex RL problems.

3.1 QV(λ ) Learning

QV(λ ) has been presented in [34] and essentially consists of a value function RL algorithm that keeps
track of both the Q function and the V function. Its main idea consists of learning the V function
through the use of temporal difference TD(λ ) learning [25], and using these estimates to learn the Q
function with an update rule similar to one step Q-Learning [33]. The main benefit of this approach
is that the V function might converge faster than the Q function, since it is not directly dependent
on the actions that are taken by the RL agent. After a transition,〈 st , at , rt , st+1 〉, QV(λ ) uses the
TD(λ ) learning rule [25] to update the V function for all states:

V (s) :=V (s)+α
[
rt + γV (st+1)−V (st)

]
et(s), (4)

where α stands for the learning rate and γ is again the discount factor. It is worth noting how the V
function is updated according to a similar learning rule as standard Q-Learning [33] to update the Q
function:

Q(st ,at) := Q(st ,at)+α
[
rt + γ max

at+1∈A
Q(st+1,at+1)−Q(st ,at)

]
. (5)

Besides this TD update, QV(λ ) also makes use of eligibility traces, defined as et(s), that are necessary
to keep track if a particular state has occurred before a certain time-step or not. These are updated for
all states as follows:

et(s) = γλet−1(s)+ηt(s), (6)

where ηt(s) is an indicator function that returns a value of 1 whether a particular state occurred at
time t and 0 otherwise. Before updating the V function, QV(λ ) updates the Q function first, and does
this via the following update rule:

Q(st ,at) := Q(st ,at)+α
[
rt + γV (st+1)−Q(st ,at)

]
. (7)

In [34] it is shown that QV(λ ) outperforms different offline and online RL algorithms in Sutton’s Dyna
maze environment. However, this algorithm has so far only been used with tabular representations
and Shallow Neural Networks [35] and never in combination with Deep Artificial Neural Networks.
Thus we now present its extension: Deep QV Learning. We show how to transform the update rules 4
and 7 as objective functions to train ANNs, and how to make the training procedure stable with the
use of ‘Experience Replay’ [18] and ‘Target Networks’ [21].

3.2 DQV Learning

Since the aim is to approximate both the V and the Q function, we train two ANNs with two distinct
objective functions. We thus define the parametrized V neural network as Φ and the Q neural network
as θ . In order to build the two objective functions it is possible to simply express QV-Learning’s
update rules in Mean Squared Error terms similarly to how DQN addresses the Q-Learning update
rule 5:

Lθ = E
[
(rt + γ max

at+1∈A
Q(st+1,at+1,θ)−Q(st ,at ,θ))

2]. (8)
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Hence we obtain the following objective function when aiming to train the V function:

LΦ = E
[
(rt + γV (st+1,Φ)−V (st ,Φ))2], (9)

while the following one can be used to train the Q function:

Lθ = E
[
(rt + γV (st+1,Φ)−Q(st ,at ,θ))

2]. (10)

By expressing the update rules 4 and 7 as such it becomes possible to minimize the just presented
objective functions by gradient descent.

QV-Learning is technically an online reinforcement learning algorithm since it assumes that its update
rules get computed each time an agent has performed an action and has observed its relative reward.
However, when it comes to more complex control problems (like the games of the Arcade Learning
Environment, ALE, presented in [21]), training a Deep Convolutional Neural Network (DCNN) in an
online setting is computationally not suitable. This would in fact make each experience usable for
training exactly one time, and as a result, a very large set of experiences will have to be collected to
properly train the ANNs. To overcome this issue it is possible to make use of ‘Experience Replay’
[17, 21, 36], a technique which allows to learn from past episodes multiple times and that has proven
to be extremely beneficial when tackling RL problems with DCNNs.

Experience Replay essentially consists of a memory buffer, D, of size N, in which experiences are
stored in the form 〈 st , at , rt , st+1 〉. Once this memory buffer is filled with a large set of these
quadruples, N , it becomes possible to randomly sample batches of such experiences for training the
model. By doing so the RL agent can learn from previous experiences multiple times and does not
have to rely only on the current 〈 st , at , rt , st+1 〉 quadruple for training. In our experiments we use
an Experience Replay buffer that stores the most recent 400,000 frames that come from the ALE, we
uniformly sample batches of 32 experiences 〈 st , at , rt , st+1 〉 ∼U(D), and use them for optimizing
the loss functions 9 and 10 each time the agent has performed an action. Training starts as soon as
50,000 frames have been collected in the buffer.

Besides making it possible to exploit past experiences multiple times, training from Experience Replay
is also known for improving the stability of the training procedure. In fact, since the trajectories that
are used for optimizing the networks get randomly sampled from the memory buffer, this makes the
samples used for training much less correlated to each other, which yields more robust training. A
second idea that serves the same purpose when it comes to TD algorithms has been proposed in [21],
and is known as the ‘Target Neural Network’.

Target Neural Network: it consists of a separate ANN that is specifically designed for estimating
the targets (yt ) that are necessary for computing the TD errors. This ANN has the exact same structure
as the one which is getting optimized, but its weights do not change each time RL experiences are
sampled from the Experience Replay buffer to train the value function. On the contrary, the weights
of the target network are temporally frozen, and only periodically get updated with the parameters of
the main network. In the classic DQN scenario the target network is parametrized as θ−, while the
Deep Q-Network uses θ , leading to a slight modification of the loss function presented in Equation 8:

Lθ = E
[
(rt + γ max

at+1∈A
Q(st+1,at+1,θ

−)−Q(st ,at ,θ))
2]. (11)

Since DQV also computes TD errors we include a specifically designed Value-Target-Network to our
algorithm, which, similarly to what happens in DQN, slightly modifies the original loss functions
presented in Equations 9 and 10 to:

LΦ = E
[
(rt + γV (st+1,Φ

−)−V (st ,Φ))2] (12)

and

Lθ = E
[
(rt + γV (st+1,Φ

−)−Q(st ,at ,θ))
2]. (13)
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For our experiments we update the Value-Target-Network Φ− with the weights of our original Value
Network Φ every 10,000 actions as defined by the hyperparameter c.

We have now defined all elements of our novel DRL algorithm which is summarized by the pseu-
docode presented in Algorithm 1.

Algorithm 1 DQV Learning
Require: Experience Replay Stack D with size N
Require: Q network with parameters θ

Require: V networks with parameters Φ and Φ−

Require: total_a = 0
Require: total_e = 0
Require: c = 10000
Require: N = 50000

1: for e ∈ EPISODES do
2: while e ¬ over do
3: observe st
4: select at ∈ A for st with policy π

5: get rt and st+1
6: store e as 〈 st , at , rt , st+1 〉 in D
7: total_e += 1
8: if total_e = N then
9: sample minibatch of 32 e from D

10: if st+1 ∈ e is over then
11: yt := rt
12: else
13: yt := rt + γV (st+1,Φ

−)
14: end if
15: θ := argmin

θ

E[(yt −Q(st ,at ,θ))
2]

16: Φ := argmin
Φ

E[(yt −V (st ,Φ))2]

17: total_a += 1
18: if total_a = c then
19: Φ− := Φ

20: total_a := 0
21: end if
22: end if
23: end while
24: end for

4 Experimental Setup

For our experiments we use two groups of environments that are both provided by the Open-AI Gym
package [4]. The first group is intended to explore DQV’s performance on a set of RL tasks that do
not rely on computationally expensive GPU support and make it possible to quickly fine tune all the
necessary hyperparameters of the algorithm. It consists of two environments that simulate two classic
control problems that are well known in RL literature: Acrobot [26] and Cartpole [3]. The second
group of environments is more challenging and consists of several Atari 2600 games. In particular we
investigate DQV’s performances on the games Pong, Enduro, Boxing and Ice-Hockey. A visualization
of such environments can be seen in Figure 1. In all the experiments we compare the performance of
DQV with two other well known self implemented TD DRL algorithms: DQN [21] and DDQN [31].

We use a two hidden layer Multilayer Perceptron (MLP) activated by a ReLU non linearity ( f (x) =
max(0,x)) when we test the DRL algorithms on the first two environments. While a three hidden
layer DCNN, followed by a fully connected layer as originally presented in [21], when tackling
the Atari 2600 games. For the latter set of environments we use the Deterministic-v4 versions
of the games, which, as proposed in [21], use ‘Frame-Skipping’, a design choice which lets the
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agent select an action every 4th frame instead of every single one. Furthermore, we use the standard
Atari-preprocessing scheme in order to resize each frame to an 84×84 gray-scaled matrix.

The Adam optimizer [13] has been used for optimizing the MLPs while the RMSprop optimizer [29]
has been used for the DCNNs. As DQV’s exploration strategy we use the well known epsilon-greedy
approach with an initial ε value set to 0.5 which gets linearly decreased to 0.1. The discount factor γ

is set to 0.99. Lastly, since the scale of the rewards changes from game to game, we ‘clip’ all the
rewards to the [−1,1] range.

Figure 1: A visualization of the six RL environments that have been used in our experiments as
provided by the Open-AI Gym package [4]. From left to right: Acrobot, Cartpole, Pong, Enduro,
Boxing, Ice-Hockey.

5 Results

We first evaluate the performance that DQV has obtained on the Acrobot and Cartpole environments
where we have used MLPs as function approximators. Given the relative simplicity of these problems
we did not integrate DQV with the Value-Target-Network. In fact, we have only optimized the two
different MLPs according to the objective functions 9 and 10 presented in Section 3.2. Regarding the
Experience Replay buffer we did not include it in the Acrobot environment while it is used in the
Cartpole one. However its size is far smaller than the one which has been presented in Algorithm 1,
in fact, since the problem tackled is much simpler, we only store 200 experiences which get randomly
sampled with a batch size of 16.

We then present the results obtained on the Atari 2600 games, where instead of MLPs, we have
used DCNNs and have integrated the algorithm with a larger Experience Replay buffer and the
Value-Target-Network. The algorithm used is thus the one presented in Algorithm 1. We report on the
x axis of all figures the amount of RL episodes that have been used to train the different algorithms,
and on the y axis the cumulative reward that has been obtained by the agents in each episode. All
results report the average cumulative reward which has been obtained over 5 different simulations
with 5 different random seeds. Please note that we smoothed the reward function with a ‘Savgol
Filter’ to improve the interpretability of the plots.

The results obtained on Acrobot and Cartpole show how promising the update rules 9 and 10 can
be when used in combination with an MLP. In fact as shown in Figure 2 it is possible to see that
DQV is able to significantly outperform DQN and DDQN in both environments. It is however worth
noting that the problems which have been tackled in this set of experiments are not particularly
complex. Hence, in order to concretely establish the performance of our novel algorithm, the Atari
2600 games serve as an ideal testbed. The results presented in Figure 3 show how DQV is again able
to systematically outperform DQN and DDQN in all the experiments we have performed. When DQV
is tested on the games Pong and Boxing it can be seen that it learns significantly faster when compared
to the other two algorithms. This is particularly true for the game Pong which gets solved in less
than 400 episodes, making DQV more than two times faster than DQN and DDQN. Similar results
have been obtained on the Boxing environment, where DQV approaches the maximum possible
cumulative reward in the game (≈ 80) almost 300 episodes before the other two algorithms. On
the Enduro and Ice-Hockey games we can see that DQV does not only learn faster, but also obtains
much higher cumulative rewards during the game. These rewards are almost twice as high in the
Enduro environment, while the results also show that DQV is the only DRL algorithm which is able
to optimize the policy over 800 episodes when it is tested on the Ice-Hockey game. The latter results
are particularly interesting since they correspond to the first and only case so far, in which we have
observed that DQN and DDQN are not able to improve the policy during the time that is required by
DQV to do so.
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Figure 2: The results that have been obtained when using DQV in combination with an MLP on two
classic RL problems (Acrobot and Cartpole). DQV learns significantly faster when compared with
DQN and DDQN.

Figure 3: The results which have been obtained when using DQV in combination with Deep
Convolutional Neural Networks, Experience Replay and Target Neural Networks on four Atari games.
It can be seen that DQV learns significantly faster on the games Pong and Boxing while it also yields
better results on the games Enduro and Ice-Hockey.
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6 Discussion and Conclusion

Besides introducing a novel DRL algorithm, we believe that the methodologies and results proposed
in this paper contribute to the field of DRL in several important ways. We showed how it is possible to
build upon existing Tabular-RL work, in order to successfully extend the set of DRL algorithms which
are currently present in the field. So far, the results obtained by DQV-Learning are very promising and
definitely suggest that our algorithm is a better alternative if compared to the well known DQN and
DDQN algorithms. Furthermore, DQV also reaffirms the benefits of TD-Learning. More specifically,
it is particularly interesting to see how effective the use of the V neural networks is, when learning
an action-value function with the Q network. When QV(λ ) has been initially introduced, one of the
main intuitions behind the algorithm relied on the fact that the V function could converge faster than
the Q function, which can make the algorithm learn faster. The results obtained in this paper support
this idea, with DQV being the fastest algorithm in all the experiments that we have performed.

Moreover, we also noticed how important it is to integrate a DRL algorithm with a specifically
designed Target-Network that is explicitly built for estimating the target values while learning. It
is worth noting however, that unlike DQN and DDQN, this Target-Network is required for the V
function and not the Q function, because the V function is used to update both value functions. Lastly,
we also remark the importance of including an Experience-Replay buffer in the algorithm when
tackling complex RL problems as the ones provided by the Arcade Learning Environment. We aim to
research more in detail the role of the Target-Network. In fact, there is to the best of our knowledge
no real formal theory that motivates the need for this additional neural architecture. Nevertheless, it
is a design choice which is well known to be useful in the field. With DQV there is a new algorithm
that makes use of it, and which could help for gaining a better understanding of this additional neural
architecture.

The main strength of DQV certainly relies on the speed that our algorithm obtains for learning.
However, we are aware that more sophisticated approaches such as the Asynchronous-Advantage-
Actor-Critic (A3C) algorithm have already been proposed in the field for dealing with long RL
training times. As future work we want to work on a multi-threaded version of DQV, and investigate
if, in case its update rules are used for training multiple agents in parallel, our algorithm could
perform better and faster than A3C. Furthermore, by estimating both the V function and the Q
function, DQV-Learning allows for a novel method to estimate the Advantage function, and we want
to study if this can help algorithms such as A3C to perform better. Finally, we want to take into
account the several contributions that have been proposed in the literature for making DQN more data
efficient and faster [12]. We will perform a similar ablation study on DQV, and investigate whether
such improvements will be as successful when applied to our algorithm and result in state-of-the-art
performance on many different Atari 2600 games.
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