Model Predictive Control; frequency support; Multi-terminal DC grid,; HIL and PHIL; Experimental validation
Abstract :
[en] The subject of this paper is the experimental validation of a recently proposed advanced control scheme for Voltage Source Converters (VSC) based on Model Predictive Control (MPC). The main purpose of the investigated advanced controller is the frequency support from an AC grid to another after significant disturbance through HVDC Grid. The paper reports on the implementation methodology on a small-scale 3-terminal DC mock-up grid consisting of several physical low-scale VSCs, actual DC cables. These components are coupled with real-time simulation tools simulating the adjacent AC grids. The different steps for the validation process of the MPC strategy are illustrated, starting from offline simulation based on a model of the DC grid, up to the actual implementation of the controller in the mock-up of the DC grid.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Belhaouane, Mohamed-Moez; Ecole Centrale de Lille > L2EP
Almaksour, Khaled; Ecole Centrale de Lille > L2EP
Papangelis, Lampros ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Colas, Frederic; Ecole Centrale de Lille > L2EP
Prevost, Thibault; RTE > R&D Dept.
Guillaud, Xavier; Ecole Centrale de Lille > L2EP
Van Cutsem, Thierry ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Language :
English
Title :
Experimental Validation of a Model Predictive Control Strategy on a Three-terminal VSC-HVDC Mock-up
Publication date :
2019
Event name :
The 15th IET international conference on AC and DC Power Transmission
Event organizer :
IET
Event place :
Coventry, United Kingdom
Event date :
5-7 February 2019
Audience :
International
Main work title :
Proceedings of the 15th IET International Conference on AC and DC Power Transmission (ACDC 2019)
N.B. Negra, J. Todorovic, T. Ackermann, “Loss evaluation of HVAC and HVDC transmission solutions for large offshore wind farms,” Electr. Power Syst. Res. 76 (2006) 916-927.
D. Van Hertem, M. Ghandhari, “Multi-terminal VSC HVDC for the European supergrid: Obstacles”, Renewable and Sustainable Energy Reviews 14 (2010) 3156-3163.
T. K. Vrana, “System Design and Balancing Control of the North Sea Super Grid”, Ph.D. thesis, Norwegian Univ. of Sc. and Techn., 2013.
T. M. Haileselassie and K. Uhlen, “Primary frequency control of remote grids connected by multi-terminal HVDC,” in Proc. 2010 IEEE PES General Meeting.
R. Wiget, G. Andersson, M. Andreasson, D. V. Dimarogonas, and K. H. Johansson, “Dynamic simulation of a combined AC and MTDC grid with decentralized controllers to share primary frequency control reserves,” in Proc. 2015 IEEE PES Eindhoven PowerTech.
T. K. Vrana, L. Zeni, and O. B. Fosso, “Active power control with undead-band voltage & frequency droop applied to a meshed DC grid test system,” in Proc. 2012 IEEE ENERGYCON.
S. Akkari, J. Dai, M. Petit, and X. Guillaud, “Coupling between the frequency droop and the voltage drop of an AC/DC converter in an MTDC system,” in Proc. 2015 IEEE PES Eindhoven PowerTech.
T. M. Haileselassie, T. Undeland, “Multi-Terminal VSC-HVDC System for Integration of Offshore Wind Farms and Green Electrification of Platforms in the North Sea,” in: Nord. Workshop Power Ind. Electron., 2008.
A. Sarlette, J. Dai, Y. Phulpin, D. Ernst, “Cooperative frequency control with a multi-terminal high-voltage DC network,” Automatica. 48 (2012) 3128-3134.
S. Akkari. Control of a multi-terminal HVDC (MTDC) system and study of the interactions between the MTDC and the AC grids. Phd thesis, Supélec, October 2016.
S. Akkari, J. Dai, M. Petit, X. Guillaud, “Interaction between the voltage-droop and the frequency-droop control for multi-terminal HVDC systems,” Transm. Distrib. IET Gener. 10 (2016) 1345-1352.
L. Papangelis, M.-S. Debry, P. Panciatici, and T. Van Cutsem, “A receding horizon approach to incorporate frequency support into the AC/DC converters of a multi-terminal DC grid,” Electric Power Systems Research, vol. 148, pp. 1-9, July 2017.
L. Papangelis, M.-S. Debry, T. Van Cutsem, P. Panciatici, “Local control of AC/DC converters for frequency support between asynchronous AC areas”, in: Proc. 2017 IEEE Manchester PowerTech.
L. Papangelis, M.-S. Debry, P. Panciatici, and T. Van Cutsem, “Coordinated Supervisory Control of Multi-Terminal HVDC Grids: A Model Predictive Control Approach,” IEEE Transactions on Power System, Vol. 32, Issue 6, 2017.
J. M. Maciejowski, Predictive control: with constraints. Pearson education, 2002.
S. A. Amamra, F. Colas, X. Guillaud, P. Rault, S. Nguefeu, “Laboratory Demonstration of a Multi-Terminal VSC-HVDC Power Grid,” IEEE Trans. Power Deliv. (2016).
P. Rault. Dynamic Modeling and Control of Multi-Terminal HVDC Grids. Phd thesis, Ecole Centrale de Lille - L2EP, March 2014.
K. Almaksour, S. Akkari, MM. Belhaouane, F. Colas and X. Guillaud, "Power-Hardware-In-the-Loop simulation of VSC-HVDC based three-terminal DC mock-up” The Power Systems Computation Conference, PSCC 2018, Dublin, Ireland.
P. Kundur, N.J. Balu, and M.G. Lauby, Power system stability and control.: McGraw-Hill Professional, 1994.
M. Klein, G. J. Rogers, and P. Kundur, "A fundamental study of inter-area oscillations in power systems," IEEE Transactions on Power Systems, vol. 6, no. 3, pp. 914-921, 1991.
P. Aristidou, L. Papangelis, X. Guillaud, and T. Van Cutsem, “Modular modelling of combined AC and DC systems in dynamic simulations,” in Proc. IEEE Eindhoven PowerTech, 2015.
C. Dufour, S. Abourida, and J. Belanger, “Hardware-In-the-Loop Simulation of Power Drives with RT-LAB,” in 2005 International Conference on Power Electronics and Drives Systems, 2005, vol. 2, pp. 1646-1651.