Reference : Homology modeling and in vivo functional characterization of the zinc permeation path...
Scientific journals : Article
Life sciences : Biochemistry, biophysics & molecular biology
http://hdl.handle.net/2268/228501
Homology modeling and in vivo functional characterization of the zinc permeation pathway in a heavy metal P-type ATPase
English
Lekeux, Gilles* mailto [Université de Liège - ULiège > Département des sciences de la vie > Centre d'ingénierie des protéines >]
Crowet, Jean-Marc* [> >]
Nouet, Cécile mailto [Université de Liège - ULiège > Département des sciences de la vie > Génomique fonctionnelle et imagerie moléculaire végétale >]
Joris, Marine [> >]
Jadoul, Alice mailto [Université de Liège - ULiège > Département des sciences de la vie > Génomique fonctionnelle et imagerie moléculaire végétale >]
Bosman, Bernard mailto [Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Ecologie végétale et microbienne >]
Carnol, Monique mailto [Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Ecologie végétale et microbienne >]
Motte, Patrick [> >]
Lins, Laurence mailto [Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Chimie des agro-biosystèmes >]
Galleni, Moreno mailto [Université de Liège - ULiège > Département des sciences de la vie > Macromolécules biologiques >]
Hanikenne, Marc mailto [Université de Liège - ULiège > Département des sciences de la vie > Génomique fonctionnelle et imagerie moléculaire végétale >]
* These authors have contributed equally to this work.
2019
Journal of Experimental Botany
Oxford University Press
70
329-341
Yes (verified by ORBi)
International
0022-0957
1460-2431
United Kingdom
[en] Zinc transport ; homology modelling ; molecular dynamics ; in vivo imaging ; P-type ATPase ; HMA4
[en] The P1B ATPase Heavy Metal ATPase 4 (HMA4) is responsible for zinc and cadmium translocation from roots to shoots in the plant Arabidopsis thaliana. It couples ATP hydrolysis to cytosolic domain movements enabling metal transport across the membrane. Thanks to high conservation level within the P-type ATPase family, the role of the HMA4 cytoplasmic catalytic domains can be inferred from well characterized pumps. In contrast, the function of its terminal cytosolic extensions as well as the metal permeation mechanism through the membrane remains elusive. Here, homology modeling of the HMA4 transmembrane region was conducted based on the crystal structure of a ZntA bacterial homolog. The analysis highlighted amino acids forming a metal permeation pathway, whose importance was subsequently investigated functionally through mutagenesis and complementation experiments in plants. Although the zinc pathway displayed overall conservation among the two proteins, significant differences were observed, especially in the entrance area with altered electronegativity and the presence of a salt bridge/H-bond network. The analysis also newly identified amino acids whose mutation results in total or partial loss of the protein function. In addition, comparison of zinc and cadmium accumulation in shoots of A. thaliana complemented lines revealed a number of HMA4 mutants exhibiting different abilities in zinc and cadmium translocation. These observations could be instrumental to design low cadmium accumulating crops, hence decreasing human cadmium exposure .
Fonds de la Recherche Scientifique (Communauté française de Belgique) - F.R.S.-FNRS
http://hdl.handle.net/2268/228501
10.1093/jxb/ery353

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Open access
Lekeux et al. 2019.pdfPublisher postprint1.03 MBView/Open

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.