Zinc transport; homology modelling; molecular dynamics; in vivo imaging; P-type ATPase; HMA4
Abstract :
[en] The P1B ATPase Heavy Metal ATPase 4 (HMA4) is responsible for zinc and cadmium translocation from roots to shoots in the plant Arabidopsis thaliana. It couples ATP hydrolysis to cytosolic domain movements enabling metal transport across the membrane. Thanks to high conservation level within the P-type ATPase family, the role of the HMA4 cytoplasmic catalytic domains can be inferred from well characterized pumps. In contrast, the function of its terminal cytosolic extensions as well as the metal permeation mechanism through the membrane remains elusive. Here, homology modeling of the HMA4 transmembrane region was conducted based on the crystal structure of a ZntA bacterial homolog. The analysis highlighted amino acids forming a metal permeation pathway, whose importance was subsequently investigated functionally through mutagenesis and complementation experiments in plants. Although the zinc pathway displayed overall conservation among the two proteins, significant differences were observed, especially in the entrance area with altered electronegativity and the presence of a salt bridge/H-bond network. The analysis also newly identified amino acids whose mutation results in total or partial loss of the protein function. In addition, comparison of zinc and cadmium accumulation in shoots of A. thaliana complemented lines revealed a number of HMA4 mutants exhibiting different abilities in zinc and cadmium translocation. These observations could be instrumental to design low cadmium accumulating crops, hence decreasing human cadmium exposure .
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Lekeux, Gilles ✱; Université de Liège - ULiège > Département des sciences de la vie > Centre d'ingénierie des protéines
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Albers RW, Fahn S, Koval GJ. 1963. The role of sodium ions in the activation of Electrophorus electric organ adenosine triphosphatase. Proceedings of the National Academy of Sciences, USA 50, 474-481.
Allen GS, Wu CC, Cardozo T, Stokes DL. 2011. The architecture of CopA from Archeaoglobus fulgidus studied by cryo-electron microscopy and computational docking. Structure 19, 1219-1232.
Andersson M, Mattle D, Sitsel O, Klymchuk T, Nielsen AM, Møller LB, White SH, Nissen P, Gourdon P. 2014. Copper-transporting P-type ATPases use a unique ion-release pathway. Nature Structural & Molecular Biology 21, 43-48.
Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM. 2008. Metal ions in biological catalysis: from enzyme databases to general principles. Journal of Biological Inorganic Chemistry 13, 1205-1218.
Argüello JM. 2003. Identification of ion-selectivity determinants in heavymetal transport P1B-type ATPases. Journal of Membrane Biology 195, 93-108.
Argüello JM, Eren E, González-Guerrero M. 2007. The structure and function of heavy metal transport P1B-ATPases. Biometals 20, 233-248.
Argüello JM, González-Guerrero M, Raimunda D. 2011. Bacterial transition metal P(1B)-ATPases: transport mechanism and roles in virulence. Biochemistry 50, 9940-9949.
Baekgaard L, Mikkelsen MD, Sørensen DM, et al. 2010. A combined zinc/cadmium sensor and zinc/cadmium export regulator in a heavy metal pump. Journal of Biological Chemistry 285, 31243-31252.
Benkert P, Tosatto SC, Schomburg D. 2008. QMEAN: a comprehensive scoring function for model quality assessment. Proteins 71, 261-277.
Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. 1984. Molecular dynamics with coupling to an external bath. Journal of Chemical Physics 81, 3684-3690.
Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J. 1981. Interaction models for water in relation to protein hydration. In: Pullman B, ed. Intermolecular forces. Proceedings of the Fourteenth Jerusalem Symposium on Quantum Chemistry and Biochemistry Held in Jerusalem, Israel, April 13-16, 1981. Dordrecht: Springer Netherlands, 331-342.
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. 2000. The protein data bank. Nucleic Acids Research 28, 235-242.
Chan H, Babayan V, Blyumin E, et al. 2010. The p-type ATPase superfamily. Journal of Molecular Microbiology and Biotechnology 19, 5-104.
Clemens S, Ma JF. 2016. Toxic heavy metal and metalloid accumulation in crop plants and foods. Annual Review of Plant Biology 67, 489-512.
Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16, 735-743.
Courbot M, Willems G, Motte P, Arvidsson S, Roosens N, Saumitou-Laprade P, Verbruggen N. 2007. A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiology 144, 1052-1065.
Craciun AR, Meyer CL, Chen J, Roosens N, De Groodt R, Hilson P, Verbruggen N. 2012. Variation in HMA4 gene copy number and expression among Noccaea caerulescens populations presenting different levels of Cd tolerance and accumulation. Journal of Experimental Botany 63, 4179-4189.
Cun P, Sarrobert C, Richaud P, Chevalier A, Soreau P, Auroy P, Gravot A, Baltz A, Leonhardt N, Vavasseur A. 2014. Modulation of Zn/ Cd P(1B2)-ATPase activities in Arabidopsis impacts differently on Zn and Cd contents in shoots and seeds. Metallomics: Integrated Biometal Science 6, 2109-2116.
Curtis MD, Grossniklaus U. 2003. A gateway cloning vector set for highthroughput functional analysis of genes in planta. Plant Physiology 133, 462-469.
Drees SL, Beyer DF, Lenders-Lomscher C, Lübben M. 2015. Distinct functions of serial metal-binding domains in the Escherichia coli P1 B-ATPase CopA. Molecular Microbiology 97, 423-438.
Dubeaux G, Neveu J, Zelazny E, Vert G. 2018. Metal sensing by the IRT1 transporter-receptor orchestrates its own degradation and plant metal nutrition. Molecular Cell 69, 953-964.
Dutta SJ, Liu J, Hou Z, Mitra B. 2006. Conserved aspartic acid 714 in transmembrane segment 8 of the ZntA subgroup of P1B-type ATPases is a metal-binding residue. Biochemistry 45, 5923-5931.
Dutta SJ, Liu J, Stemmler AJ, Mitra B. 2007. Conservative and nonconservative mutations of the transmembrane CPC motif in ZntA: effect on metal selectivity and activity. Biochemistry 46, 3692-3703.
Ekberg K, Wielandt AG, Buch-Pedersen MJ, Palmgren MG. 2013. A conserved asparagine in a P-type proton pump is required for efficient gating of protons. Journal of Biological Chemistry 288, 9610-9618.
Eren E, González-Guerrero M, Kaufman BM, Argüello JM. 2007. Novel Zn2+ coordination by the regulatory N-terminus metal binding domain of Arabidopsis thaliana Zn2+-ATPase HMA2. Biochemistry 46, 7754-7764.
Eren E, Kennedy DC, Maroney MJ, Argüello JM. 2006. A novel regulatory metal binding domain is present in the C terminus of Arabidopsis Zn2+-ATPase HMA2. Journal of Biological Chemistry 281, 33881-33891.
Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Pieper U, Sali A. 2007. Comparative protein structure modeling using MODELLER. Current Protocols in Protein Science Chapter 2, Unit 2.9.
Finney LA, O'Halloran TV. 2003. Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science 300, 931-936.
González-Guerrero M, Argüello JM. 2008. Mechanism of Cu+-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites. Proceedings of the National Academy of Sciences, USA 105, 5992-5997.
Gourdon P, Liu XY, Skjørringe T, Morth JP, Møller LB, Pedersen BP, Nissen P. 2011. Crystal structure of a copper-transporting PIB-type ATPase. Nature 475, 59-64.
Goyer RA. 1997. Toxic and essential metal interactions. Annual Review of Nutrition 17, 37-50.
Hanikenne M, Baurain D. 2013. Origin and evolution of metal P-type ATPases in Plantae (Archaeplastida). Frontiers in Plant Science 4, 544.
Hanikenne M, Kroymann J, Trampczynska A, Bernal M, Motte P, Clemens S, Krämer U. 2013. Hard selective sweep and ectopic gene conversion in a gene cluster affording environmental adaptation. PLoS Genetics 9, e1003707.
Hanikenne M, Nouet C. 2011. Metal hyperaccumulation and hypertolerance: a model for plant evolutionary genomics. Current Opinion in Plant Biology 14, 252-259.
Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Krämer U. 2008. Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453, 391-395.
Hänsch R, Mendel RR. 2009. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology 12, 259-266.
Hermand V, Julio E, Dorlhac de Borne F, Punshon T, Ricachenevsky FK, Bellec A, Gosti F, Berthomieu P. 2014. Inactivation of two newly identified tobacco heavy metal ATPases leads to reduced Zn and Cd accumulation in shoots and reduced pollen germination. Metallomics: Integrated Biometal Science 6, 1427-1440.
Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. 1997. LINCS: a linear constraint solver for molecular simulations. Journal of Computational Chemistry 18, 1463-1472.
Hess B, Kutzner C, van der Spoel D, Lindahl E. 2008. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation 4, 435-447.
Hong H. 2014. Toward understanding driving forces in membrane protein folding. Archives of Biochemistry and Biophysics 564, 297-313.
Humphrey W, Dalke A, Schulten K. 1996. VMD: visual molecular dynamics. Journal of Molecular Graphics 14, 33-8, 27.
Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobbett CS. 2004. P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. The Plant Cell 16, 1327-1339.
Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. 2008. NCBI BLAST: a better web interface. Nucleic Acids Research 36, W5-W9.
Kambe T, Tsuji T, Hashimoto A, Itsumura N. 2015. The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiological Reviews 95, 749-784.
Ko J, Park H, Heo L, Seok C. 2012. GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Research 40, W294-W297.
Krämer U. 2010. Metal hyperaccumulation in plants. Annual Review of Plant Biology 61, 517-534.
Kühlbrandt W. 2004. Biology, structure and mechanism of P-type ATPases. Nature Reviews. Molecular Cell Biology 5, 282-295.
Laskowski RA, MacArthur MW, Moss DS, Thornton JM. 1993. PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography 26, 283-291.
Laurent C, Lekeux G, Ukuwela AA, et al. 2016. Metal binding to the N-terminal cytoplasmic domain of the PIB ATPase HMA4 is required for metal transport in Arabidopsis. Plant Molecular Biology 90, 453-466.
Lefebvre B, Batoko H, Duby G, Boutry M. 2004. Targeting of a Nicotiana plumbaginifolia H+-ATPase to the plasma membrane is not by default and requires cytosolic structural determinants. The Plant cell 16, 1772-1789.
Liedschulte V, Laparra H, Battey JN, Schwaar JD, Broye H, Mark R, Klein M, Goepfert S, Bovet L. 2017. Impairing both HMA4 homeologs is required for cadmium reduction in tobacco. Plant, Cell & Environment 40, 364-377.
Liu J, Dutta SJ, Stemmler AJ, Mitra B. 2006. Metal-binding affinity of the transmembrane site in ZntA: implications for metal selectivity. Biochemistry 45, 763-772.
Liu J, Stemmler AJ, Fatima J, Mitra B. 2005. Metal-binding characteristics of the amino-terminal domain of ZntA: binding of lead is different compared to cadmium and zinc. Biochemistry 44, 5159-5167.
Lutsenko S, Petris MJ. 2003. Function and regulation of the mammalian copper-transporting ATPases: insights from biochemical and cell biological approaches. Journal of Membrane Biology 191, 1-12.
Ma Z, Jacobsen FE, Giedroc DP. 2009. Coordination chemistry of bacterial metal transport and sensing. Chemical Reviews 109, 4644-4681.
Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH. 2007. The MARTINI force field: coarse grained model for biomolecular simulations. Journal of Physical Chemistry. B 111, 7812-7824.
Mattle D, Sitsel O, Autzen HE, Meloni G, Gourdon P, Nissen P. 2013. On allosteric modulation of P-type Cu(+)-ATPases. Journal of Molecular Biology 425, 2299-2308.
Mills RF, Francini A, Ferreira da Rocha PS, Baccarini PJ, Aylett M, Krijger GC, Williams LE. 2005. The plant P1B-type ATPase AtHMA4 transports Zn and Cd and plays a role in detoxification of transition metals supplied at elevated levels. FEBS Letters 579, 783-791.
Mills RF, Krijger GC, Baccarini PJ, Hall JL, Williams LE. 2003. Functional expression of AtHMA4, a P1B-type ATPase of the Zn/Co/Cd/Pb subclass. The Plant Journal 35, 164-176.
Mills RF, Valdes B, Duke M, Peaston KA, Lahner B, Salt DE, Williams LE. 2010. Functional significance of AtHMA4 C-terminal domain in planta. PLoS One 5, e13388.
Mitra B, Sharma R. 2001. The cysteine-rich amino-terminal domain of ZntA, a Pb(II)/Zn(II)/Cd(II)-translocating ATPase from Escherichia coli, is not essential for its function. Biochemistry 40, 7694-7699.
Miyadate H, Adachi S, Hiraizumi A, et al. 2011. OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytologist 189, 190-199.
Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P. 2009. AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiology 149, 894-904.
Nosé S. 1984. A unified formulation of the constant temperature molecular dynamics methods. Journal of Chemical Physics 81, 511-519.
Notredame C, Higgins DG, Heringa J. 2000. T-Coffee: a novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology 302, 205-217.
Nouet C, Charlier JB, Carnol M, Bosman B, Farnir F, Motte P, Hanikenne M. 2015. Functional analysis of the three HMA4 copies of the metal hyperaccumulator Arabidopsis halleri. Journal of Experimental Botany 66, 5783-5795.
Nucifora G, Chu L, Misra TK, Silver S. 1989. Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase. Proceedings of the National Academy of Sciences, USA 86, 3544-3548.
Nzengue Y, Candéias SM, Sauvaigo S, Douki T, Favier A, Rachidi W, Guiraud P. 2011. The toxicity redox mechanisms of cadmium alone or together with copper and zinc homeostasis alteration: its redox biomarkers. Journal of Trace Elements in Medicine and Biology 25, 171-180.
Odermatt A, Suter H, Krapf R, Solioz M. 1993. Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae. Journal of Biological Chemistry 268, 12775-12779.
Okkeri J, Haltia T. 2006. The metal-binding sites of the zinc-transporting P-type ATPase of Escherichia coli. Lys693 and Asp714 in the seventh and eighth transmembrane segments of ZntA contribute to the coupling of metal binding and ATPase activity. Biochimica et Biophysica Acta 1757, 1485-1495.
Olesen C, Picard M, Winther AM, Gyrup C, Morth JP, Oxvig C, Møller JV, Nissen P. 2007. The structural basis of calcium transport by the calcium pump. Nature 450, 1036-1042.
Olsen LI, Hansen TH, Larue C, et al. 2016. Mother-plant-mediated pumping of zinc into the developing seed. Nature Plants 2, 16036.
O Lochlainn S, Bowen HC, Fray RG, Hammond JP, King GJ, White PJ, Graham NS, Broadley MR. 2011. Tandem quadruplication of HMA4 in the zinc (Zn) and cadmium (Cd) hyperaccumulator Noccaea caerulescens. PLoS One 6, e17814.
Padilla-Benavides T, McCann CJ, Argüello JM. 2013. The mechanism of Cu+ transport ATPases: interaction with Cu+ chaperones and the role of transient metal-binding sites. Journal of Biological Chemistry 288, 69-78.
Palmer CM, Guerinot ML. 2009. Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nature Chemical Biology 5, 333-340.
Palmgren MG, Nissen P. 2011. P-type ATPases. Annual Review of Biophysics 40, 243-266.
Parrinello M, Rahman A. 1981. Polymorphic transitions in single crystals: a new molecular dynamics method. Journal of Applied Physics 52, 7182-7190.
Pedersen CN, Axelsen KB, Harper JF, Palmgren MG. 2012. Evolution of plant p-type ATPases. Frontiers in Plant Science 3, 31.
Pedersen BP, Buch-Pedersen MJ, Morth JP, Palmgren MG, Nissen P. 2007. Crystal structure of the plasma membrane proton pump. Nature 450, 1111-1114.
Poger D, Mark AE. 2010. On the validation of molecular dynamics simulations of saturated and cis-monounsaturated phosphatidylcholine lipid bilayers: a comparison with experiment. Journal of Chemical Theory and Computation 6, 325-336.
Poger D, Van Gunsteren WF, Mark AE. 2010. A new force field for simulating phosphatidylcholine bilayers. Journal of Computational Chemistry 31, 1117-1125.
Post RL, Sen AK. 1965. An enzymatic mechanism of active sodium and potassium transport. Journal of Histochemistry and Cytochemistry 13, 105-112.
Raimunda D, Subramanian P, Stemmler T, Argüello JM. 2012. A tetrahedral coordination of zinc during transmembrane transport by P-type Zn(2+)-ATPases. Biochimica et Biophysica Acta 1818, 1374-1377.
Rausin G, Tillemans V, Stankovic N, Hanikenne M, Motte P. 2010. Dynamic nucleocytoplasmic shuttling of an Arabidopsis SR splicing factor: role of the RNA-binding domains. Plant Physiology 153, 273-284.
Rensing C, Mitra B, Rosen BP. 1997. The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proceedings of the National Academy of Sciences, USA 94, 14326-14331.
Rosenzweig AC, Argüello JM. 2012. Toward a molecular understanding of metal transport by P(1B)-type ATPases. Current Topics in Membranes 69, 113-136.
Sasaki A, Yamaji N, Ma JF. 2014. Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. Journal of Experimental Botany 65, 6013-6021.
Satoh-Nagasawa N, Mori M, Nakazawa N, Kawamoto T, Nagato Y, Sakurai K, Takahashi H, Watanabe A, Akagi H. 2012. Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant & Cell Physiology 53, 213-224.
Schmid N, Eichenberger AP, Choutko A, Riniker S, Winger M, Mark AE, van Gunsteren WF. 2011. Definition and testing of the GROMOS forcefield versions 54A7 and 54B7. European Biophysics Journal 40, 843-856.
Siemianowski O, Barabasz A, Weremczuk A, Ruszczynska A, Bulska E, Williams LE, Antosiewicz DM. 2013. Development of Zn-related necrosis in tobacco is enhanced by expressing AtHMA4 and depends on the apoplastic Zn levels. Plant, Cell & Environment 36, 1093-1104.
Sinclair SA, Krämer U. 2012. The zinc homeostasis network of land plants. Biochimica et Biophysica Acta 1823, 1553-1567.
Sinclair SA, Sherson SM, Jarvis R, Camakaris J, Cobbett CS. 2007. The use of the zinc-fluorophore, Zinpyr-1, in the study of zinc homeostasis in Arabidopsis roots. New Phytologist 174, 39-45.
Sitsel O, Grønberg C, Autzen HE, Wang K, Meloni G, Nissen P, Gourdon P. 2015. Structure and function of Cu(I)-and Zn(II)-ATPases. Biochemistry 54, 5673-5683.
Smith AT, Smith KP, Rosenzweig AC. 2014. Diversity of the metaltransporting P1B-type ATPases. Journal of Biological Inorganic Chemistry 19, 947-960.
Takahashi R, Ishimaru Y, Shimo H, Ogo Y, Senoura T, Nishizawa NK, Nakanishi H. 2012. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant, Cell & Environment 35, 1948-1957.
Talke IN, Hanikenne M, Krämer U. 2006. Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiology 142, 148-167.
Thever MD, Saier MH Jr. 2009. Bioinformatic characterization of P-type ATPases encoded within the fully sequenced genomes of 26 eukaryotes. Journal of Membrane Biology 229, 115-130.
Tillemans V, Dispa L, Remacle C, Collinge M, Motte P. 2005. Functional distribution and dynamics of Arabidopsis SR splicing factors in living plant cells. The Plant Journal 41, 567-582.
Tironi IG, Sperb R, Smith PE, van Gunsteren WF. 1995. A generalized reaction field method for molecular dynamics simulations. Journal of Chemical Physics 102, 5451-5459.
Toyoshima C, Norimatsu Y, Iwasawa S, Tsuda T, Ogawa H. 2007. How processing of aspartylphosphate is coupled to lumenal gating of the ion pathway in the calcium pump. Proceedings of the National Academy of Sciences, USA 104, 19831-19836.
Ueno D, Yamaji N, Kono I, Huang CF, Ando T, Yano M, Ma JF. 2010. Gene limiting cadmium accumulation in rice. Proceedings of the National Academy of Sciences, USA 107, 16500-16505.
Unni S, Huang Y, Hanson RM, Tobias M, Krishnan S, Li WW, Nielsen JE, Baker NA. 2011. Web servers and services for electrostatics calculations with APBS and PDB2PQR. Journal of Computational Chemistry 32, 1488-1491.
Verret F, Gravot A, Auroy P, Leonhardt N, David P, Nussaume L, Vavasseur A, Richaud P. 2004. Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Letters 576, 306-312.
Verret F, Gravot A, Auroy P, Preveral S, Forestier C, Vavasseur A, Richaud P. 2005. Heavy metal transport by AtHMA4 involves the N-terminal degenerated metal binding domain and the C-terminal His11 stretch. FEBS Letters 579, 1515-1522.
Wang K, Sitsel O, Meloni G, Autzen HE, Andersson M, Klymchuk T, Nielsen AM, Rees DC, Nissen P, Gourdon P. 2014. Structure and mechanism of Zn2+-transporting P-type ATPases. Nature 514, 518-522.
Wassenaar TA, Ingólfsson HI, Böckmann RA, Tieleman DP, Marrink SJ. 2015. Computational lipidomics with insane: a versatile tool for generating custom membranes for molecular simulations. Journal of Chemical Theory and Computation 11, 2144-2155.
Wassenaar TA, Pluhackova K, Böckmann RA, Marrink SJ, Tieleman DP. 2014. Going backward: a flexible geometric approach to reverse transformation from coarse grained to atomistic models. Journal of Chemical Theory and Computation 10, 676-690.
Williams LE, Mills RF. 2005. P(1B)-ATPases-an ancient family of transition metal pumps with diverse functions in plants. Trends in Plant Science 10, 491-502.
Wong CKE, Cobbett CS. 2009. HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana. New Phytologist 181, 71-78.
Wong CKE, Jarvis RS, Sherson SM, Cobbett CS. 2009. Functional analysis of the heavy metal binding domains of the Zn/Cd-transporting ATPase, HMA2, in Arabidopsis thaliana. New Phytologist 181, 79-88.
Yamaji N, Xia J, Mitani-Ueno N, Yokosho K, Feng Ma J. 2013. Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2. Plant Physiology 162, 927-939.
Yan J, Wang P, Wang P, Yang M, Lian X, Tang Z, Huang CF, Salt DE, Zhao FJ. 2016. A loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of Japonica rice cultivars. Plant, Cell & Environment 39, 1941-1954.
Zhitnitsky D, Lewinson O. 2014. Identification of functionally important conserved trans-membrane residues of bacterial PIB-type ATPases. Molecular Microbiology 91, 777-789.
Zimmermann M, Clarke O, Gulbis JM, Keizer DW, Jarvis RS, Cobbett CS, Hinds MG, Xiao Z, Wedd AG. 2009. Metal binding affinities of Arabidopsis zinc and copper transporters: selectivities match the relative, but not the absolute, affinities of their amino-terminal domains. Biochemistry 48, 11640-11654.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.