Arras, B., Azmoodeh, E., Poly, G., Swan, Y., Stein characterizations for linear combinations of gamma random variables. arXiv:1709.01161, 2017.
Arras, B., Azmoodeh, E., Poly, G., Swan, Y., A bound on the 2-Wasserstein distance between linear combinations of independent random variables. Stochastic Process. Appl., 2018, 10.1016/j.spa.2018.07.009 in press.
Arras, B., Houdré C., On Stein's method for infinitely divisible laws with finite first moment. arXiv:1712.10051, 2017.
Arras, B., Mijoule, G., Poly, G., Swan, Y., A new approach to the Stein–Tikhomirov method, with applications to the second Wiener chaos and Dickman convergence. arXiv:1605.06819, 2017.
Barndorff-Nielsen, O.E., Kent, J., Sørensen, M., Normal variance-mean mixtures and z distributions. Int. Stat. Rev. 50 (1982), 145–159.
Chatterjee, S., Fulman, J., Röllin, A., Exponential approximation by Stein's method and spectral graph theory. ALEA Lat. Am. J. Probab. Math. Stat. 8 (2011), 197–223.
Chen, L.H.Y., Poisson approximation for dependent trials. Ann. Probab. 3 (1975), 534–545.
Chen, L.H.Y., Goldstein, L., Shao, Q.M., Normal Approximation by Stein's Method. 2010, Springer Science & Business Media.
Diaconis, P., Zabell, S., Closed form summation for classical distributions: variations on a theme of De Moivre. Statist. Sci. 6 (1991), 284–302.
Döbler, C., Stein's method of exchangeable pairs for the beta distribution and generalizations. Electron. J. Probab. 20:109 (2015), 1–34.
Döbler, C., Gaunt, R.E., Vollmer, S.J., An iterative technique for bounding derivatives of solutions of Stein equations. Electron. J. Probab. 22:96 (2017), 1–39.
Eichelsbacher, P., Löwe, M., Stein's method for dependent random variables occurring in statistical mechanics. Electron. J. Probab. 15 (2010), 962–988.
Eichelsbacher, P., Thäle, C., Malliavin–Stein method for variance-gamma approximation on Wiener space. Electron. J. Probab. 20:123 (2015), 1–28.
Gaunt, R.E., Variance-gamma approximation via Stein's method. Electron. J. Probab. 19:38 (2014), 1–33.
Gaunt, R.E., On Stein's method for products of normal random variables and zero bias couplings. Bernoulli 23 (2017), 3311–3345.
Gaunt, R.E., A Stein characterisation of the generalized hyperbolic distribution. ESAIM Probab. Stat. 21 (2017), 303–316.
Gaunt, R.E., A probabilistic proof of some integral formulas involving the Meijer G-function. Ramanujan J. 45 (2018), 253–264.
Gaunt, R.E., Products of normal, beta and gamma random variables: Stein operators and distributional theory. Braz. J. Probab. Stat. 32 (2018), 437–466.
R.E. Gaunt, G. Miljoule, Y. Swan, Some new Stein operators, 2018, in preparation.
Goldstein, L., Reinert, G., Stein's method for the beta distribution and the Pólya–Eggenberger urn. J. Appl. Probab. 50 (2013), 1187–1205.
Harper, A.J., Two new proofs of the Erdös–Kac theorem, with bound on the rate of convergence, by Stein's method for distributional approximations. Math. Proc. Cambridge Philos. Soc. 147 (2009), 95–114.
Koudou, A.E., Ley, C., characterisations of GIG laws: a survey complemented with two new results. Probab. Surv. 11 (2014), 161–176.
Kumar, A.N., Upadhye, N.S., On perturbations of Stein operator. Comm. Statist. Theory Methods 46 (2017), 9284–9302.
Kusuoka, S., Tudor, C.A., Stein's method for invariant measures of diffusions via Malliavin calculus. Stochastic Process. Appl. 122 (2012), 1627–1651.
Ley, C., Reinert, G., Swan, Y., Stein's method for comparison of univariate distributions. Probab. Surv. 14 (2017), 1–52.
Luk, H., Stein's Method for the Gamma Distribution and Related Statistical Applications. PhD thesis, 1994, University of Southern California.
Luke, Y.L., The Special Functions and Their Approximations, vol. 1. 1969, Academic Press, New York.
McKeague, I., Peköz, E., Swan, Y., Stein's method, many interacting worlds and quantum mechanics. Bernoulli, 2018 in press.
Nourdin, I., Peccati, G., Normal Approximations with Malliavin Calculus: From Stein's Method to Universality, vol. 192. 2012, Cambridge University Press.
Nourdin, I., Peccati, G., Swan, Y., Entropy and the fourth moment phenomenons. J. Funct. Anal. 266 (2014), 3170–3207.
Nourdin, I., Peccati, G., Swan, Y., Integration by parts and representation of information functionals. 2014 IEEE International Symposium on Information Theory, ISIT, 2014, IEEE.
Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W., NIST Handbook of Mathematical Functions. 2010, Cambridge University Press.
Peköz, E., Röllin, A., Ross, N., Degree asymptotics with rates for preferential attachment random graphs. Ann. Appl. Probab. 23 (2013), 1188–1218.
Peköz, E., Röllin, A., Ross, N., Generalized gamma approximation with rates for urns, walks and trees. Ann. Probab. 44 (2016), 1776–1816.
Pike, J., Ren, H., Stein's method and the Laplace distribution. ALEA Lat. Am. J. Probab. Math. Stat. 11 (2014), 571–587.
Schoutens, W., Orthogonal polynomials in Stein's method. J. Math. Anal. Appl. 253 (2001), 515–531.
Springer, M.D., Thompson, W.E., The distribution of independent random variables. SIAM J. Appl. Math. 14 (1966), 511–526.
Springer, M.D., Thompson, W.E., The distribution of products of Beta, Gamma and Gaussian random variables. SIAM J. Appl. Math. 18 (1970), 721–737.
Stein, C., A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. Proc. Sixth Berkeley Symp. Math. Statist. Prob., vol. 2, 1972, Univ. California Press, Berkeley, 583–602.
Stein, C., Approximate Computation of Expectations. 1986, IMS, Hayward, California.
Xu, L., Approximation of stable law in Wasserstein-1 distance by Stein's method. arXiv:1709.00805, 2018.