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Abstract

We build upon recent advances on the distributional aspect of Stein’s method to propose
a novel and flexible technique for computing Stein operators for random variables that can be
written as products of independent random variables. We show that our results are valid for
a wide class of distributions including normal, beta, variance-gamma, generalized gamma and
many more. Our operators are kth degree differential operators with polynomial coefficients;
they are straightforward to obtain even when the target density bears no explicit handle.
As an application, we derive a new formula for the density of the product of k independent
symmetric variance-gamma distributed random variables.
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1 Introduction

In 1972, Charles Stein (1920–2016) [41] introduced a powerful method for estimating the error in
normal approximations. The method was adapted to the Poisson distribution by Louis Chen
in [8], and has since been extended to a very broad family of probability distributions. The
general procedure for a given target distribution p is as follows. In the first step, one obtains
a suitable operator A acting on a class of test functions F such that IE[Af(X)] = 0 for all
f ∈ F ; the operator A is called a Stein operator for p. For continuous distributions, A is a
typically a differential operator; for the standard normal distribution, the classical operator is
Af(x) = f ′(x)− xf(x). One then considers the so-called Stein equation

Afh(x) = h(x)− IEh(X), (1)

where h is a real-valued test function. If A is well chosen then, for a given h, the Stein equation
(1) can be solved for fh. The second step of the method consists of obtaining this solution and
then bounding appropriate lower order derivatives. Evaluating both sides of (1) at a random
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variable of interest W and taking the supremum over all h in some class of functions H leads to
the estimate

dH(L(W ),L(X)) := sup
h∈H
|IEh(W )− IEh(X)| ≤ sup

fh

|IE[Afh(W )]|, (2)

where the final supremum is taken over all fh that solve (1). The third and final step of the
method involves developing appropriate strategies for bounding the expectation on the right
hand side of (2). This is of interest because many important probability metrics (such as the
Kolmogorov and Wasserstein metrics) are of the form dH(L(W ),L(X)). Moreover, in many
settings bounding the expectation IE[Afh(W )] is relatively tractable, and as a result Stein’s
method has found application in disciplines as diverse as random graph theory [5], number theory
[22], statistical mechanics [13] and quantum mechanics [29]. We refer to the survey paper [37]
as well as to the monographs [30, 9] for a deeper look into some of the fruits of Charles Stein’s
seminal insights, particularly in the case where the target is the normal distribution.

The linchpin of the method is the operator A whose properties are crucial to the success of
the whole enterprise. In the sequel, we concentrate exclusively on differential Stein operators
(some operators in the literature are integral or even fractional, see e.g. [43, 3]) and adopt the
following lax definition:

Definition 1.1. A linear differential operator A acting on a class F of functions is a Stein
operator for X if (i) Af ∈ L1(X) and (ii) IE [Af(X)] = 0 for all f ∈ F .

There are infinitely many Stein operators for any given target distribution. For instance, if
the distribution is known (even if only up to a normalizing constant) then the “canonical” theory
from [26] applies, leading to entire families of operators. This approach provides natural first
order polynomial operators e.g. for target distributions which belong to the Pearson family [38]
or which satisfy a diffusive assumption [11, 25]. In some cases, one may rather apply a duality
argument. For instance the p.d.f. γ(x) = (2π)−1/2e−x

2/2 of the standard normal distribution
satisfies the first order ODE γ′(x) + xγ(x) = 0 leading, by integration by parts, to the already
mentioned operator Af(x) = f ′(x) − xf(x). This is particularly useful for densities defined
implicitely via ODEs. Such are by no means the only methods for deriving differential Stein
operators and, for any given X, one can easily determine an entire ecosystem of Stein operators,
leading to the natural question of which operator to choose. One natural way to sieve through
the available options is to further impose that the chosen operator be characterizing for X, i.e.
that if some Y enjoys the property that IE[f(Y )] = 0 for all f ∈ F , then Y=X (equality in law).
Such requirements often do not suffice and will not be imposed here; our focus will rather be on
another crucial quality of a “good” Stein operator: tractability. More precisely, we will focus
solely on Stein operators which satisfy the next definition.

Definition 1.2. We call a Stein operator polynomial if it can be written as a finite sum A =∑
i,j aijM

iDj for real coefficients aij ∈ IR, with M(f) = (x 7→ xf(x)) and D(f) = (x 7→ f ′(x)).

Except in the most basic cases, determining polynomial Stein operators is not an easy task.
Interestingly, many densities do not admit a first order polynomial Stein operator and it is
necessary to consider higher order operators: [15] obtains a second order operator for the entire
family of variance-gamma distributions (see also [14] and [17]), [36] obtain a second order Stein
operator for the Laplace distribution, and [34] obtain a second order operator for the PRR
distribution, which has a density that can be expressed in terms of the Kummer U function. If
the p.d.f. of X is defined in terms of special functions (Kummer U , Meijer G, Bessel, etc.) which
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are themselves defined as solutions to explicit dth order differential equations then the duality
approach shall yield a tractable differential operator with explicit coefficients.

In many cases, the target distribution is not even defined analytically in terms of its distribution
but rather probabilistically, as a statistic (sum, product, quotient) of independent contributions.
Explicit knowledge of the density of such random variables is then generally unavailable and, in
order to obtain polynomial Stein operators for such objects, new approaches must be devised. In
[2, 1], a Fourier-based approach is developed for identifying appropriate operators for arbitrary
combinations of independent chi-square distributed random variables. In [19, 16], an iterative
conditioning argument is provided for obtaining operators for (mixed) products of independent
random beta, gamma and mean-zero normal random variables. In this context we are naturally
lead to the following research problem:

Given independent random variables X1, . . . , Xd with polynomial operators A1, . . . , Ad,
respectively, can one deduce a tractable polynomial Stein operator for statistics of the
form X = F (X1, . . . , Xd)?

In this paper, we provide an answer for functionals of the form F (x1, . . . , xd) = xα1
1 · · ·x

αd
d with

αi ∈ IR and Xi’s with polynomial Stein operator satisfying a specific commutativity assumption
(Assumption 3 below).

This paper is mostly devoted to the problem of obtaining Stein operators, which allows for
a focused treatment of their theory. We acknowledge, though, that further work is required
before the Stein operators obtained in this paper can be used to prove approximation theorems
via Stein’s method. However, the theory of Stein operators to which this paper contributes
is of importance in its own right. Indeed, there are now a wide variety of techniques which
allow one to obtain useful bounds on solutions to the resulting Stein equations (see, for example,
[24, 12, 3]) and which can be adapted to the operators that we derive. Also, and this has now
been demonstrated in several papers such as [31, 32, 2, 4, 1], Stein operators can be used for
comparison of probability distributions directly without the need of solving Stein equations; such
an area is also the object of much interest. Finally, we stress that Stein operators are also of use
in applications beyond proving approximation theorems; for example, in obtaining distributional
properties [16, 19] and other surprising applications include the derivation of formulas for definite
integrals of special functions [18]. Indeed, in Section 4, we propose a novel general technique for
obtaining formulas of densities of distributions that may be intractable through other existing
methods.

The outline of the paper is as follows. In Section 2 we identify the key elements allowing to
construct a form of “operator algebra” which provides – by elementary calculations – polynomial
operators for X’s which can be written as products (see Section 2.4) and powers (see Section
2.5) of independent contributions. We apply the theory in Section 3 to recover several operators
from contemporary literature on Stein’s method and also to provide many new ones. Finally, in
Section 4 we consider an application of operators obtained by our method to finding densities of
product distributions.

2 An algebra of Stein operators

2.1 About the class of functions on which the operators are defined

All random variables we consider in the paper satisfy the following assumption:
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Assumption 1: X admits a smooth density p with respect to the Lebesgue measure on IR; this
density is defined and non-vanishing on some (possibly unbounded) interval J ⊆ IR.

By definition, a Stein operator A for a random variable X acts on a collection F of functions
for which the expectations vanish. Although determining the largest possible set F may be an
interesting quest, it will not be part of ours because this can only be done on a case-by-case
basis and the focus of our paper is the construction of an algebra allowing to generate tractable
operators. In order to ensure that the operators we obtain do not act on trivial classes of
functions (e.g. F = {∅}), we shall simply impose the following assumption:

Assumption 2: X admits an operator A acting on F which contains the set of smooth functions
with compact support C∞0 (IR).

Assumption 2 is not too restrictive in our context (see Remark 2.2 below), although we will
need to reinforce it slightly in Section 2.5. A collateral benefit of restricting to random variables
satisfying Assumptions 1 and 2 is that we now may consider samples X1, . . . , Xn of random
variables with respective operators A1, . . . , An acting on their respective classes F1, . . . ,Fn and
we are ensured that

⋂n
i=1Fi ⊇ C∞0 (IR). Consequentially, it is guaranteed that any statements on

the joint behaviour of any of the Ai will also hold on non-trivial classes of functions.

Remark 2.1. In some cases (for instance when X has exponential moments), one can easily
extend F to smooth functions f such that f (k) has at most polynomial growth for all k ≥ 0 (and
in particular, to polynomials).

Remark 2.2. Under Assumption 1, the “canonical” Stein operator in [26] is Ac : f 7→ (fp)′/p =
f ′ + p′/pf and we have IE[Acf(X)] = 0 at least for those functions f such that f(x)p(x)→ 0 on
the border of J . If J = (−∞,+∞), it is clear that any f ∈ C∞0 (IR) satisfies f(x)p(x) → 0 on
the border of J , hence Assumption 2 is automatically satisfied. On the other hand, if J has a
finite border, say J = (a,+∞) with a ∈ IR, then f ∈ C∞0 (IR) does not imply necessarily that fp
vanishes on the border (see [7] for the case of exponential approximation). An easy workaround
in this case is to apply the operator to (x − a)f instead of f , which leads to the new operator
A = Ac(M − aI). This operator satisfies IE[Af(X)] = 0 for all f ∈ C∞0 (IR). Of course, this has
to be done on both borders of the support if they are both are finite.

2.2 The building blocks

Let us record some notation regarding the different operators that will be used throughout the
paper. We let F ⊇ C∞0 (IR); M is the multiplication operator: M(f) = (x 7→ xf(x)); D the
differentiation operator D(f) = f ′; I the identity of F ; for a ∈ IR \ {0}, τa(f) = (x 7→ f(ax));
and ∀r ∈ IR, Tr = MD + rI.

Remark 2.3. We will also need to consider the limit of operator Tr as r →∞. Although such
a limit is badly defined, we note how limr→∞ r

−1Tr = I (pointwisely for any f ∈ F). Abusing
notations, we will write T∞ = I.

Our starting point is the following extension of one of the main results of [19]:

Proposition 2.4. Let F ⊇ C∞0 (IR). Assume X,Y are random variables with respective Stein
operators

AX = LX −MpKX , (3)

AY = LY −MpKY , (4)
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where p ∈ IN and where the operators LX ,KX , LY ,KY commute with each other and with every
τa, a ∈ IR. Then, if X and Y are independent,

LXLY −MpKXKY (5)

is a Stein operator for XY .

Proof. Let f ∈ F . Using a conditioning argument and the commutative property between the
different operators, we have that

IE[LXLY f(XY )] = IE[IE[τY LXLY f(X) |Y ]]

= IE[IE[LXτY LY f(X) |Y ]]

= IE[IE[MpKXτY LY f(X) |Y ]]

= IE[IE[XpτYKXLY f(X) |Y ]]

= IE[XpKXLY f(XY )]

= IE[XpIE[τXKXLY f(Y ) |X]]

= IE[XpIE[LY τXKXf(Y ) |X]]

= IE[XpIE[MpKY τXKXf(Y ) |X]]

= IE[XpY pKYKXf(XY ) ],

which achieves the proof.

The assumption that the operators commute with scaling τa is crucial for the proof of
Proposition 2.4; it will also reveal itself to be the linchpin of our “operator algebra”. Restricting
to first order differential operators we deduce that the fundamental operators LX ,KX , LY ,KY

need to be of the form Tr = MD + rI, as these are the only first order polynomial Stein
operators which commute with the multiplication operator (at least for a non trivial class F).
A fundamental subalgebra of linear operators, which will play a prominent role in this work, is
the algebra T composed of all linear combinations and compositions of Tr’s for r ∈ IR ∪ {∞}.
Note also that T is the set of operators that are polynomials of the operator MD. Since each Tr
commutes which each τa, so does any element of T . These considerations naturally lead to the
following assumption which will underpin the entire theory we develop:

Assumption 3: There exist k ∈ IN and linear operators L,K such that X admits a Stein
operator (in the sense of Definition 1.1) of the form

A = L−MkK, (6)

where the operators L, K are elements of T .

In most situations that we consider, however, the operators K and L will be products of Tr
operators. We now collect some useful relations for the operators that will be used throughout
this paper.

Lemma 2.5. Let r, r′ ∈ IR, a ∈ IR \ {0} and n ∈ IN. Then, acting on the class of functions
F ⊇ C∞0 (IR), the operators (M,D, Tr, τa) satisfy the following relations:

τaM = aMτa and Dτa = a τaD,
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and
TrM

n = MnTr+n and TrD
n = DnTr−n. (7)

Additionally, Tr and Tr′ always commute, and every Tr commutes with every τa.

Proof. (i) Here, and throughout the proof, let f ∈ F . Then, τaMf(x) = τaxf(x) = axf(ax) =
aMτaf(x) and Dτaf(x) = Df(ax) = af ′(ax) = aτaDf(x), as required.

(ii) By the product rule of differentiation, one has that DM = MD + I. Therefore, TrM =
MDM + rM = M2D + (r + 1)M = MTr+1, and the first relation now follows from direct
recurrence. Similarly, we have TrD = rMD2 +D = rDMD+ (r− 1)D = DTr−1, and the second
relation now follows from direct recurrence.

(iii) That Tr and Tr′ commute follows since they are polynomials, of degree 1, in MD. Also,
Trτaf(x) = Trf(ax) = axf ′(ax) + rf(ax) = τa(xf

′(x) + rf(x)) = τaTrf(x), and therefore Tr and
τa commute.

Note also that if we define, for an operator L, LT : {LA ; A ∈ T }, and similarly T L, then a
direct consequence of (7) is that for any n ∈ Z+,

MnT = TMn and DnT = T Dn. (8)

2.3 More on Assumption 3

The purpose of this section is to give a simple criterion to identify operators A that satisfy
Assumption 3. We have the following criterion for X to satisfy Assumption 3, when its Stein
operator is written in an expanded form.

Lemma 2.6. X satisfies Assumption 3 if, and only if, X has a Stein operator of the form∑
i,j aijM

jDi with # {j − i | aij 6= 0} ≤ 2.

Proof. Let us give a preliminary result. Let L = Mk1Dl1 . . .MknDln . Let q =
∑

i ki −
∑

i li.
Then if q ≥ 0, L ∈ M qT . Indeed, note that MD = T0 and DM = T1. Hence, in the product
Mk1Dl1 . . .MknDln , one can pair any product MD (or DM), replace it by T0 (or T1), and flush
it right using (7). Hence the result.

Now we prove the Lemma. If X satisfies Assumption 3, then a Stein operator for X is
A = P (MD) −MkQ(MD), where P and Q are polynomials. Using repeatedly the fact that
DM = MD+ I, one sees that for any integer n ∈ IN, (MD)n can be expanded in a sum of terms
of the type alM

lDl, l ∈ IN, al ∈ IR. The same holds for Q(MD). Hence A =
∑

i,j aijM
jDi with

{j − i | aij 6= 0} = {0, k}.
Let us prove the converse. We only treat the case # {j − i | aij 6= 0} = 2, the others being

similar. Assume A =
∑

i,j aijM
jDi such that # {j − i | aij 6= 0} = {k1, k2} with k1 > k2, is

a Stein operator for X. Assume first that k2 ≥ 0. Then from the above, M jDi ∈ M j−iT ,
the latter set being either Mk1T or Mk2T , depending on the value of j − i. But from (8),
Mk1T = Mk1−k2TMk2 and Mk2T = TMk2 . Hence A can be rewritten LMk2 −Mk1−k2KMk2 ,
with L,K ∈ T . Simplifying by Mk2 on the right (i.e., applying A to x 7→ f(x)x−k2 instead of f)
yields the result.

If k2 < 0, one can multiply A by M−k2 on the right and proceed in the same manner.

Remark 2.7. Assume X admits a smooth density p, which solves the differential equation
Bp = 0 with B =

∑
i,j bijM

jDi. Then, by duality (i.e. integration by parts; see Section 4 for

further detail), a Stein operator for X is given by A =
∑

i,j(−1)ibijD
iM j. Then, in a similar
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manner as in the previous lemma, one can prove that X satisfies Assumption 3 if, and only
if, # {j − i | bij 6= 0} ≤ 2. In other words, the condition given in Lemma 2.6 for X to satisfy
Assumption 3 can be equivalently checked on the Stein operator A or on the differential operator
B which cancels out the density of X.

One can specialize the result of Lemma 2.6 when the score of the distribution of X is a
rational fraction, which includes a wide class of classical distributions. In this paper, X will
be a continuous random variable, and we use the terminology score function of X to mean the
logarithmic derivative of its probability density function.

Corollary 2.8. Assume X admits a score function of the form

ρ(x) :=
p′(x)

p(x)
=

a xk + b xl

c xk+1 + d xl+1
, (9)

with k, l ∈ N. Then X satisfies Assumption 3.
Conversely, if the score ρ of X is a rational fraction, and if X satisfies Assumption 3, then ρ

is of the form (9).

Proof. Assume that
p′(x)

p(x)
=

∑n
i=0 aix

i∑m
j=0 bjx

j
.

Starting from the canonical Stein operator f 7→ f ′ + p′

p f , and applying it to (
∑m

j=0 bjx
j)f(x),

we have that A = D
(∑n

j=0 bjM
j
)

+
∑n

i=0 aiM
i is a Stein operator for X. Since DM j =

jM j−1 +M jD, an application of Lemma 2.6 yields the result.

Let us now focus on the class of Pearson distributions, that is the collection all continuous
probability distributions which satisfy 9 with k = 1, l = 0. We give here a generalization of [42],
Theorem 1, p. 65 proving that Pearson distributions have polynomial Stein operators which can
be written in terms of operators in T .

Lemma 2.9 ([42],Theorem 1, p. 65). Let X be of Pearson type with score function

ρ(x) :=
p′(x)

p(x)
= − ax− `

δ2x2 + δ1x+ δ0
(10)

for some a, `, δ0, δ1, δ2 and x on the resulting support. If δ0 = 0 then

A = Mδ2T2−a/δ2 + δ1T1+`/δ1 (11)

and if δ0 6= 0 then
A = M2δ2T3−a/δ2 + δ1MT1+`/δ1 + δ0T1 (12)

is a Stein operator for X.

Proof. If X is Pearson with log-derivative (10) then denoting −Pnum/Pdenom this ratio we see
that (fPdenomp)

′ /p = f(P ′denom − Pnum) + f ′Pdenom, i.e.

f ′(x)
(
δ2x

2 + δ1x+ δ0

)
+ f(x) ((2δ2 + a)x+ (δ1 − `)) .

This operator is integrable with respect to p (with integral 0) for all f ∈ F . Conclusion (11) follows
immediately, while (12) is obtained after replacing f with xf and using TrM = MTr+1.
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Example 2.10. The normal distribution N(µ, σ2) falls into this class. It has log-derivative
ρ(x) = −(x− µ)/σ2 on IR: a = 1, ` = µ, δ1 = δ2 = 0 and δ0 = σ2 and (12) applies leading to
A = σ2T1 + µM −M2 (recall that rT1/r → I as r → 0). Assumption 3 is satisfied if and only
if µ = 0; in a future work [20] we shall introduce a technique for obtaining Stein operators for
products of a class of distributions, which includes the non centered normal distribution, that
do not satisfy Assumption 3. Other examples that are in the class of Lemma 2.9 include the
gamma, beta, Student’s t, and inverse-gamma distributions, all of which satisfy Assumption 3.
The resulting Stein operators (which are not new to the literature) are given in Appendix A.

2.4 The algebra for products of distributions

We first note how Proposition 2.4 is easily generalised to the product of n independent random
variables, by induction. More precisely, if (Xi)1≤i≤n are independent random variables with
respective Stein operator Li−MpKi, if all the operators {Li,Ki}1≤i≤n commute with each other
and with the τa, a ∈ IR, then a Stein operator for

∏n
i=1Xi is

n∏
i=1

Li −Mp
n∏
i=1

Ki.

The main drawback of Proposition 2.4 is that we assume the same power of Mp appears in
both operators. As such, the Proposition cannot be applied for instance for the product of a
gamma (for which p = 1, see Appendix A) and a centered normal (for which p = 2, see Appendix
A). In the following Lemma and Proposition, we show how to bypass this difficulty: one can
build another Stein operator for X with the power p multiplied by an arbitrary integer k (even
though by doing so, one increases the order of the operator). Here we restrict ourselves to the
case where the Li and Ki operators are products of operators Tα and we make use of the relation
(7).

Lemma 2.11. Assume X has a Stein operator of the form

AX = a
n∏
i=1

Tαi − bMp
m∏
i=1

Tβi . (13)

Then, for every k ≥ 1,

ak
n∏
i=1

k−1∏
j=0

Tαi+jp − bkMkp
m∏
i=1

k−1∏
j=0

Tβi+jp

is a Stein operator for X.

Proof. We prove the result by induction on k. By assumption, it is true for k = 1. Then, using
the recurrence hypothesis and (7),

IE

[
ak+1

k∏
j=0

n∏
i=1

Tαi+jkf(X)

]
= IE

[
aak

k−1∏
j=0

n∏
i=1

Tαi+jp

( n∏
i=1

Tαi+kpf

)
(X)

]

= IE

[
abkMkp

k−1∏
j=0

m∏
i=1

Tβi+jp

( n∏
i=1

Tαi+kpf

)
(X)

]

= IE

[
abk

n∏
i=1

TαiM
kp

k−1∏
j=0

m∏
i=1

Tβi+jpf(X)

]
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= IE

[
bk+1Mp

m∏
i=1

TβiM
kp

k−1∏
j=0

m∏
i=1

Tβi+jpf(X)

]

= IE

[
bk+1Mkp

k∏
j=0

m∏
i=1

Tβi+jpf(X)

]
,

which proves our claim.

Lemma 2.11 leads to the following rule of thumb for the problem of finding a Stein operator
for a product of independent random variables X and Y with Stein operators AX = a

∏n
i=1 Tαi −

bMp
∏m
i=1 Tβi and AY = a′

∏n′

i=1 Tα′i − b
′Mp′

∏m′

i=1 Tβ′i , with p 6= p′. Apply Lemma 2.11 to X
with k = p′ and to Y with k = p to get Stein operators for X and Y of the form of Proposition
2.4, but with p replaced by pp′. Then apply the Proposition. As an illustration, one can prove
the following.

Proposition 2.12. Assume X,Y are random variables with respective Stein operators

AX = a1Tα1 − a2M
pTα2 ,

AY = b1Tβ1 − b2M qTβ2 ,

where p, q ∈ IN and α1, α2, β1, β2 ∈ IR∪{∞} (and Remark 2.3 applies in case any of the αi or βi,
i = 1, 2 is set to +∞). Let m be the least common multiple of p and q and write m = k1p = k2q.
Then, if X and Y are independent,

ak11 b
k2
1

k1−1∏
i=0

Tα1+ip

k2−1∏
i=0

Tβ1+iq −Mmak12 b
k2
2

k1−1∏
i=0

Tα2+ip

k2−1∏
i=0

Tβ2+iq

is a Stein operator for XY .

Proof. Apply Lemma 2.11 with k1 and k2 to get, for all f ∈ F ,

IE

[
ak11

k1−1∏
j=0

Tα1+jpf(X)

]
= IE

[
ak12 M

m
k1−1∏
j=0

Tα2+jpf(X)

]
,

and

IE

[
bk21

k2−1∏
j=0

Tβ1+jpf(Y )

]
= IE

[
bk22 M

m
k2−1∏
j=0

Tβ2+jpf(Y )

]
.

Then the proof follows from an application of Proposition 2.4.

Remark 2.13. Let us give an example when one of the T operators is the identity. We have
that if X,Y are random variables with respective Stein operators

AX = a1Tα − a2M
p,

AY = b1Tβ − b2M q,

then, with the same notation, a Stein operator for XY is

ak11 b
k2
1

k1−1∏
i=0

Tα+ip

k2−1∏
i=0

Tβ+iq − ak12 b
k2
2 M

m.
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2.5 The algebra for powers and inverse distributions

In this section, we consider (not necessarily integer nor positive) powers of X’s and this implies
we shall need to modify Assumption 2 from Section 2.1 to ensure that all operators are well
defined. If X takes values a.s. in IR\{0}, then we restrict to test functions f ∈ C∞0 (IR\{0}).
If X takes values a.s. in (0,∞), then we further restrict to test functions f ∈ C∞0 ((0,∞)).
Likewise, we extend some notations from Section 2.2. We extend the definition of Ma to a ∈ Z
by Maf(x) = xaf(x), x 6= 0. Further we extend this definition to a ∈ IR for x ∈ (0,∞).

Let us first note a result concerning powers. Let Pa be defined by Paf(x) = f(xa). For a 6= 0,
we have that TrPa = aPaTr/a, since

TrPaf(x) = x · axa−1f ′(xa) + rf(xa) = axaf ′(xa) + rf(xa)

= a(xaf ′(xa) + (r/a)f(xa)) = aPaTr/af(x).

This result allows us to easily obtain Stein operators for powers of random variables and inverse
distributions. Suppose X has Stein operator

AX = aTα1 · · ·Tαn − bM qTβ1 · · ·Tβm .

We can write down a Stein operator for Xγ immediately (if X takes negative values, we restrict
to positive or integer-valued γ):

AXγ = aTα1 · · ·TαnPγ − bM qTβ1 · · ·TβmPγ
= aγnPγTα1/γ · · ·Tαn/γ − bγ

mM qPγTβ1/γ · · ·Tβm/γ
= aγnPγTα1/γ · · ·Tαn/γ − bγ

mPγM
q/γTβ1/γ · · ·Tβm/γ . (14)

Applying P1/γ on the left of (14) gives the following Stein operator for the random variable Xγ :

ÃXγ = aγnTα1/γ · · ·Tαn/γ − bγ
mM q/γTβ1/γ · · ·Tβm/γ , (15)

as P1/γPγ = I.

From (15) we immediately obtain, for example, the classical χ2
(1) Stein operator T1/2 − 1

2M

from the standard normal Stein operator T1 −M2. However, in certain situations, a more
convenient form of the Stein operator may be desired. To illustrate this, we consider the
important special case of inverse distributions. Here γ = −1, which yields the following Stein
operator for 1/X:

a(−1)nT−α1 · · ·T−αn − b(−1)mM−qT−β1 · · ·T−βm .

To remove the singularity, we multiply on the right by M−1 to get

A1/X = a(−1)nT−α1 · · ·T−αnM q − b(−1)mM−qT−β1 · · ·T−βmM q

= a(−1)nM qTq−α1 · · ·Tq−αn − b(−1)mTq−β1 · · ·Tq−βm .

Cancelling constants gives the Stein operator

Ã1/X = bTq−β1 · · ·Tq−βm − (−1)m+naM qTq−α1 · · ·Tq−αn . (16)

10



3 Applying the algebra to find new Stein operators

Starting from the classical Stein operators of the centered normal, gamma, beta, Student’s
t, inverse-gamma, PRR, variance-gamma (with θ = 0 and µ = 0), and generalized gamma
distributions, we use the results of Section 2.4 to derive new operators for the (possibly mixed)
products of these distributions. The operators of the aforementioned distributions are summed
up in Appendix A. Stein operators for any mixed product of independent copies of such random
variables are attainable through a direct application of Proposition 2.12. We give some examples
below.

3.1 Mixed products of centered normal and gamma random variables

Stein operators for (mixed) products of independent central normal, beta and gamma random
variables were obtained by [16, 19]. Here we demonstrate how these Stein operators can be easily
derived by an application of our theory (we omit the beta distribution for reasons of brevity).
Let (Xi)1≤i≤n and (Yj)1≤j≤m be independent random variables and assume Xi ∼ N (0, σ2) and
Yj ∼ Γ(rj , λj). The random variables Xi and Yj admit the following Stein operators:

AXi = σ2
i T1 −M2, (17)

AYj = Trj − λjM. (18)

A repeated application of Proposition 2.12 now gives the following Stein operators:

AX1···Xn = σ2
1 · · ·σ2

nT
n
1 −M2, (19)

AY1···Ym = Tr1 · · ·Trm − λ1 · · ·λmM, (20)

AX1···XnY1···Ym = σ2
1 · · ·σ2

nT
n
1 Tr1 · · ·TrmTr1+1 · · ·Trm+1 − λ1 · · ·λmM2. (21)

The product gamma Stein operator (20) is in exact agreement with the one obtained by [19].
However, the Stein operators (19) and (21) differ slightly from those of [16, 19], because
they act on different functions. Indeed, the product normal Stein operator given in [16] is
ÃX1···Xn = σ2

1 · · ·σ2
nDT

n
0 −M , but multiplying through on the right by M yields (19). The same

is true of the mixed product operator (21), which is equivalent to the mixed normal-gamma
Stein operator of [19] multiplied on the right by M . We refer to Appendix A where this idea is
expounded.

Finally, we note that whilst the operators (19) and (20) are of orders n and m, respectively,
the mixed product operator (21) is of order n+ 2m, rather than order n+m which one may at
first expect. This a consequence of the fact that the powers of M in the Stein operator (17) and
(18) differ by a factor of 2.

3.2 Mixed product of Student and variance-gamma random variables

Let (Xi)1≤i≤n and (Yj)1≤j≤m be independent random variables and assume Xi ∼ tνi follows
Student’s t-distribution with ν degrees of freedom and Yj ∼ VG(rj , 0, σj , 0); the p.d.f.s of these
distributions are given in Appendix A. Xi and Yj admit Stein operators of the form:

AXi = νiT1 +M2T2−νi ,

AYj = σ2
jT1Trj −M2. (22)

Note that one cannot apply Proposition 2.4 to the VG(r, θ, σ, 0) Stein operator σ2T1Tr+2θMTr/2−
M2, because Assumption 3 is not satisfied.

11



Applying recursively Proposition 2.4, we obtain the following Stein operators:

AX1···Xn = ν1 . . . νnT
n
1 − (−1)nM2T2−ν1 . . . T2−νn ,

AY1···Ym = σ2
1 . . . σ

2
mT

m
1 Tr1 . . . Trm −M2, (23)

AX1···XnY1···Ym = ν1 . . . νnσ
2
1 . . . σ

2
mT

n+m
1 Tr1 . . . Trm − (−1)nM2T2−ν1 . . . T2−νn .

As an aside, note that (22) can be obtained by applying Proposition 2.4 to the Stein operators

AX = σ2T1 −M2, AY = Tr −M2,

where X and Y are independent. We can identify AX as the Stein operator for a N (0, σ2) random
variable and AY as the Stein operator of the random variable Y =

√
V where V ∼ Γ(r/2, 1/2).

Since the variance-gamma Stein operator is characterizing (see [15], Lemma 3.1), it follows that
that Z ∼ VG(r, 0, σ, 0) is equal in distribution to X

√
V . This representation of the VG(r, 0, σ, 0)

distribution can be found in [6]. This example demonstrates that by characterizing probability
distributions, Stein operators can be used to derive useful properties of probability distributions;
for a further discussion on this general matter see Section 4.

The Stein operator (23) will be used in Section 4 in a derivation of the formula for the p.d.f.
of the product of independent VG(r, 0, σ, 0) random variables. As an example, following some
straightforward calculations, we write down explicitly the Stein operator for the case m = 2 and
σ1 = σ2 = 1:

AY1Y2f(x) = x4f (4)(x) + (8 + r1 + r2)x3f (3)(x) + (17 + 5r1 + 5r2 + r1r2)x2f ′′(x)

+ (4 + 3r1 + 3r2 + r1r2)xf ′(x) + (r1r2 − x2)f(x).

3.3 PRR distribution

A Stein operator for the PRR distribution is given by

Asf(x) = sT1T2f(x)−M2T2sf(x) = sx2f ′′(x) + (4sx− x3)f ′(x) + 2s(1− x2)f(x), (24)

see Appendix A. We now exhibit a neat derivation of this Stein operator by an application of
Sections 2.4 and 2.5. Let X and Y be independent random variables with distributions

X ∼

{
Beta(1, s− 1), if s > 1,

Beta(1/2, s− 1/2), if 1/2 < s ≤ 1,

and

Y ∼

{
Γ(1/2, 1), if s > 1,

Exp(1), if 1/2 < s ≤ 1.

Then it is known that
√

2sXY ∼ Ks (see [34], Proposition 2.3).
If s > 1, then we have the following Stein operators for X and Y :

AX = T1 −MTs, AY = T1/2 −M,

and, for 1/2 < s ≤ 1, we have the following Stein operators for X and Y :

AX = T1/2 −MTs, AY = T1 −M.

12



Using Proposition 2.12, we have that, for all s > 1/2,

AXY = T1/2T1 −MTs.

From (15) we obtain the Stein operator

A√XY = T1T2 − 2M2T2s,

which on rescaling by a factor of
√

2s yields the operator (24).

3.4 Inverse and quotient distributions

From (16) we can write down inverse distributions for many standard distributions. First, suppose
X ∼ Beta(a, b). Then a Stein operator for 1/X is

A1/X = T1−a−b −MT1−a. (25)

Now, let X1 ∼ Beta(a1, b1) and X2 ∼ Beta(a2, b2) be independent. Then using Proposition 2.12
applied to the Stein operator (25) for 1/X and the beta Stein operator, we have the following
Stein operator for Z = X1/X2:

AZ = Ta1T1−a2−b2 −MTa1+b1T1−a2 , (26)

which is a second order differential operator.
Let us consider the inverse-gamma distribution. Let X ∼ Γ(r, λ), then the gamma Stein

equation is AX = Tr−λM . From (16) we can obtain a Stein operator for 1/X (an inverse-gamma
random variable):

A1/X = MT1−r − λI.

If X1 ∼ Γ(r1, λ1) and X ∼ Γ(r2, λ2), we have from the above operator and Proposition 2.12, the
following Stein operator for Z = X1/X2:

AZ = λ1MT1−r2 + λ2Tr1 , (27)

which is a first order differential operator. As a special case, we can obtain a Stein operator for
the F -distribution with parameters d1 > 0 and d2 > 0. This is because Z ∼ F (d1, d2) is equal in

distribution to X1/d1
X2/d2

, where X1 ∼ χ2
(d1) and X2 ∼ χ2

(d2) are independent. Now applying (27) and

rescaling to take into account the factor d1/d2 gives the following Stein operator for Z:

AZ = d1MT1−d2/2 + d2Td1/2. (28)

As this Stein operator seems to be new to the literature and may prove useful in applications
due to the importance of the F -distribution in statistics, we write out the operator explicitly:

AZf(x) = (d1x
2 + d2x)f ′(x) + (d1d2/2 + d1(1− d2/2)x)f(x).

One can also easily derive the generalized gamma Stein operator from the gamma Stein
operator. The Stein operator for the GG(r, λ, q) distribution is given by Tr − qλqM q. Using the

relationship X
L
= (λ1−qY )1/q for X ∼ GG(r, λ, q) and Y ∼ Γ(r/q, λ) (see [35]) together with (15)
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and a rescaling, we readily recover the generalized gamma Stein operator from the usual gamma
Stein operator.

As a final example, we note that we can use Proposition 2.12 to obtain a Stein operator
for the ratio of two independent standard normal random variables. A Stein operator for the
standard normal random variable X1 is T1 −M2 and we can apply (16) to obtain the following
Stein operator for the random variable 1/X1:

A1/X1
= M2T1 − I.

Hence a Stein operator for the ratio of two independent standard normals is

A = (1 +M2)T1,

which is the Stein operator for the Cauchy distribution (a special case of the Student’s t Stein
operator of [38]), as one would expect.

4 Duals of Stein operators and densities of product distributions

Fundamental methods, based on the Mellin integral transform, for deriving formulas for densities
of product distributions were developed by [39, 40]. In [40], formulas, involving the Meijer
G-function, were obtained for products of independent centered normals, and for mixed products
of beta and gamma random variables. However, for other product distributions, applying the
Mellin inversion formula can lead to intractable calculations.

In this section, we present a novel method for deriving formulas for densities of product
distributions based on the duality between Stein operators and ODEs satisfied by densities. Our
approach builds on that of [19] in which a duality argument was used to derive a new formula
for the p.d.f. of a mixed product of mutually independently centered normal, beta and gamma
random variables (deriving such a formula using the Mellin inversion formula would have required
some very involved calculations). We apply this method to derive a new formula for the p.d.f. of
the product of n independent VG(r, 0, σ, 0) random variables. We begin with a duality lemma
whose proof is a generalisation of the argument given in Section 3.2 of [19].

Lemma 4.1. Let Z be a random variable with density p supported on an interval [a, b] ⊆ IR. Let

Af(x) = Tr1 · · ·Trnf(x)− bxqTa1 · · ·Tamf(x), (29)

and suppose that
IE[Af(Z)] = 0 (30)

for all f ∈ Ck([a, b]), where k = max{m,n}, such that

1. xq+1+i+jp(i)(x)f (j)(x)→ 0, as x→ a and as x→ b, for all i, j such that 0 ≤ i+ j ≤ m;

2. x1+i+jp(i)(x)f (j)(x)→ 0, as x→ a and as x→ b, for all i, j such that 0 ≤ i+ j ≤ n.

(We denote this class of functions by Cp). Then p satisfies the differential equation

T1−r1 · · ·T1−rnp(x)− b(−1)m+nxqTq+1−a1 · · ·Tq+1−amp(x) = 0. (31)

Remark 4.2. The class of functions Cp consists of all f ∈ Ck([a, b]), where k = max{m,n}, that
satisfy particular boundary conditions at a and b. Note that when (a, b) = IR the class includes
the set of all functions on IR with compact support that are k times differentiable. The class Cp
suffices for the purpose of deriving the differential equation (31), although we expect that for
particular densities (such as the beta distribution) the conditions on f could be weakened.
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Proof. We begin by writing the expectation (30) as∫ b

a

{
Tr1 · · ·Trnf(x)− bxqTa1 · · ·Tamf(x)

}
p(x) dx = 0, (32)

which exists if f ∈ Cp. In arriving at the differential equation (31), we shall apply integration by
parts repeatedly. To this end, it is useful to note the following integration by parts formula. Let
γ ∈ IR and suppose that φ and ψ are differentiable. Then∫ b

a
xγφ(x)Trψ(x) dx =

∫ b

a
xγφ(x){xψ′(x) + rψ(x)} dx =

∫ b

a
xγ+1−rφ(x)

d

dx
(xrψ(x)) dx

=
[
xγ+1φ(x)ψ(x)

]b
a
−
∫ b

a
xrψ(x)

d

dx
(xγ+1−rφ(x)) dx

=
[
xγ+1φ(x)ψ(x)

]b
a
−
∫ b

a
xγψ(x)Tγ+1−rφ(x) dx, (33)

provided the integrals exist.
We now return to equation (32) and use the integration by parts and formula (33) to obtain

a differential equation that is satisfied by p. Using (33) we obtain∫ b

a
xqp(x)Ta1 · · ·Tamf(x) dx =

[
xq+1p(x)Ta2 · · ·Tamf(x)

]b
a

−
∫ b

a
xqTq+1−a1p(x)Ta2 · · ·Tamf(x) dx

= −
∫ b

a
xqTq+1−a1p(x)Ta2 · · ·Tamf(x) dx,

where we used condition (i) to obtain the last equality. By a repeated application of integration
by parts, using formula (33) and condition (i), we arrive at∫ b

a
xqp(x)Ta1 · · ·Tamf(x) dx = (−1)m

∫ b

a
xqf(x)Tq+1−a1 · · ·Tq+1−amp(x) dx.

By a similar argument, this time using formula (33) and condition (ii), we obtain∫ b

a
p(x)Tr1 · · ·Trnf(x) dx = (−1)n

∫ b

a
f(x)T1−r1 · · ·T1−rnp(x) dx.

Putting this together we have that∫ b

a
{(−1)nT1−r1 · · ·T1−rnp(x)− b(−1)mxqTq+1−a1 · · ·Tq+1−amp(x)}f(x) dx = 0 (34)

for all f ∈ Cp. Since (34) holds for all f ∈ Cp, we deduce (from an argument analogous to that
used to prove the fundamental lemma of the calculus of variations) that p satisfies the differential
equation (31). This completes the proof.

We now show how the duality Lemma 4.1 can be exploited to derive formulas for densities
of distributions. By duality, p satisfies the differential equation (31), and making the change of
variables y = b

qn−mx
q yields the following differential equation

T 1−r1
q

· · ·T 1−rn
q
p(y)− (−1)m+nyT q+1−a1

q

· · ·T q+1−am
q

p(y) = 0. (35)

15



We recognise (35) as an instance of the Meijer G-function differential equation (41). There are
max{m,n} linearly independent solutions to (35) that can be written in terms of the Meijer
G-function (see [33], Chapter 16, Section 21). Using a change of variables, we can thus obtain a
fundamental system of solutions to (31) given as Meijer G-functions. One can then arrive at
a formula for the density by imposing the conditions that the solution must be non-negative
and integrate to 1 over the support of the distribution. Due to the difficulty of handling the
Meijer G-function, this final analysis is in general not straightforward. However, one can “guess”
a formula for the density based on the fundamental system of solutions, and then verify that this
is indeed the density by an application of the Mellin transform (note that in this verification step
there is no need to use the Mellin inversion formula). An interesting direction for future research
would be to develop techniques for identifying formulas for densities of distributions based solely
on an analysis of the differential equation (31). However, even as it stands, we have a technique
for obtaining formulas for densities that may be intractable through standard methods.

Products of VG(r, 0, σ, 0) random variables. Let (Zi)1≤i≤n ∼ VG(ri, 0, σi, 0) be independent, and
set Z =

∏n
i=1 Zi. Recall the Stein operator (23) for the product of VG(ri, 0, σi, 0) distributed

random variables:
AZf(x) = σ2Tn1 Tr1 . . . Trn −M2,

where σ2 = σ2
1 . . . σ

2
n. By Lemma 4.1, it follows that the density p satisfies the following differential

equation:
Tn0 T1−r1 · · ·T1−rnp(x)− σ−2x2p(x) = 0. (36)

Arguing as we did to obtain the ODE (35), we make the substitution y = x2

22nσ2 to reduce (36) to
a G-function ODE of the type (41). We can therefore identify that the following function is a
solution to (36):

p(x) = CG2n,0
0,2n

(
x2

22nσ2

∣∣∣∣ r1 − 1

2
, . . . ,

rn − 1

2
, 0, . . . , 0

)
,

where C is an arbitrary constant. We can apply (40) to choose C such the p integrates to 1
across its support:

p(x) =
1

2nπn/2σ

n∏
j=1

1

Γ(rj/2)
G2n,0

0,2n

(
x2

22nσ2

∣∣∣∣ r1 − 1

2
, . . . ,

rn − 1

2
, 0, . . . , 0

)
. (37)

We verify that this ‘guess’ this is indeed the density using Mellin transforms; note that this
verification is much more straightforward than an application of the Mellin inversion formula.

Let us define the Mellin transform and state some properties that will be useful to us. The
Mellin transform of a non-negative random variable U with density p is given by MU (s) = IEU s−1,
for all s such that the expectation exists. If the random variable U has density p that is symmetric
about the origin then we can define the Mellin transform of U by

MU (s) = 2

∫ ∞
0

xs−1p(x) dx. (38)

The Mellin transform is useful in determining the distribution of products of independent random
variables due to the property that if the random variables U and V are independent then
MUV (s) = MU (s)MV (s).

To obtain the Mellin transform of Z =
∏n
i=1 Zi, we recall that Zi

L
= Xi

√
Yi, where Xi ∼

N (0, σ2
i ) and Yi ∼ Γ(r/2, 1/2) are independent. Using the formulas for the Mellin transforms of
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Distribution Parameters Notation

Normal µ, σ ∈ IR N (µ, σ2)

Gamma r, λ > 0 Γ(r, λ)

Beta a, b > 0 Beta(a, b)

Student’s t ν > 0 tν
Inverse-gamma α, β > 0 IG(α, β)

F -distribution d1, d2 > 0 F (d1, d2)

PRR distribution s > 1/2 PRRs
Variance-gamma r, σ > 0, θ, µ ∈ IR VG(r, θ, σ, µ)

Generalized gamma r, λ, q > 0 GG(r, λ, q)

Table 1: Distributions

the normal and gamma distributions (see [40]), we have that

MXi(s) =
1√
π

2(s−1)/2σs−1
i Γ(1/2), M√Yi(s) = MYi((s+ 1)/2) = 2(s−1)/2 Γ( ri−1+s

2 )

Γ(ri)
,

and therefore

MZ(s) =
1

πn/2
2n(s−1)σs−1[Γ(s/2)]n

n∏
i=1

Γ( ri−1+s
2 )

Γ( ri2 )
. (39)

Now, let W denote a random variable with density (37). Then, using (38) and (40) gives that

MW (s) = 2× 1

2nπn/2σ

n∏
j=1

1

Γ(rj/2)
×
(

1

22nσ2

)−s/2
× [Γ(s/2)]n ×

n∏
i=1

Γ

(
ri − 1 + s

2

)
,

which is equal to (39). Since the Mellin transforms of W is equal to that of Z, it follows that W
is equal in law to Z. Therefore (37) is indeed the p.d.f. of the random variable Z.

A List of Stein operators for continuous distributions

Recall that Mf(x) = xf(x), I is the identity and Taf(x) = xf ′(x) + af(x). We also recall that

the beta function is defined by B(a, b) = Γ(a)Γ(b)
Γ(a+b) , and that U(a, b, x) and Kν(x) denote the

confluent hypergeometric function of the second kind ([33], Chapter 13) and the modified Bessel
function of the second kind ([33], Chapter 10), respectively.

We give a list of Stein operators for several classical probability distributions, in terms of the
above operators. References for these Stein operators are as follows: normal [41], gamma [10, 27],
beta [11, 21, 38], Student’s t [38], inverse-gamma [23], F -distribution (new to this paper), PRR
[34], variance-gamma [15], and generalized gamma [19].

The usual Stein operators (as defined in the above references) for the normal, PRR and
variance-gamma distributions, are not in the form required in Section 2. In these cases, we
multiply the operators by M on the right for the normal and variance-gamma distributions, and
we multiply the operator by M2 on the right for the PRR distribution.
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Distribution p.d.f. Stein operator

N (µ, σ2) 1√
2πσ

e−(x−µ)/σ2
σ2T1 + µM −M2

Γ(r, λ) λr

Γ(r)x
r−1e−λx1x>0 Tr − λM .

Beta(a, b) 1
B(a,b)x

a−1(1− x)b−110<x<1 Ta −MTa+b

tν
Γ( ν+1

2
)√

νπΓ( ν
2

)

(
1 + x2

ν

)−(ν+1)/2
νT1 +M2T2−ν

IG(α, β) βα

Γ(α)x
−α−1e−β/x 1x>0 βI +MT1−α

F (d1, d2) 1

B(
d1
2
,
d2
2

)

(
d1
d2

)d1/2xd1/2−1
(
1 + d1

d2
x
)−(d1+22)/2

1x>0 d2Td1/2 + d1MT1−d2/2

PRRs Γ(s)
√

2
sπ exp

(
− x2

2s

)
U
(
s− 1, 1

2 ,
x2

2s

)
1x>0 sT1T2 −M2T2s

VG(r, θ, σ, µ = 0) 1
σ
√
πΓ( r

2
)
e
θ
σ2
x( |x|

2
√
θ2+σ2

) r−1
2 K r−1

2

(√
θ2+σ2

σ2 |x|
)

σ2T1Tr + 2θMTr/2 −M2

GG(r, λ, q) qλr

Γ(r/q)x
r−1e−(λx)q 1x>0 Tr − qλqM q

Table 2: p.d.f. and Stein operator of some classical distributions.

B The Meijer G-function

The Meijer G-function is defined (see see [28, 33]), for z ∈ IC \ {0}, by the contour integral:

Gm,np,q

(
z

∣∣∣∣ a1, . . . , ap
b1, . . . , bq

)
=

1

2πi

∫ c+i∞

c−i∞
z−s

∏m
j=1 Γ(s+ bj)

∏n
j=1 Γ(1− aj − s)∏p

j=n+1 Γ(s+ aj)
∏q
j=m+1 Γ(1− bj − s)

ds,

where c is a real constant defining a Bromwich path separating the poles of Γ(s+ bj) from those
of Γ(1− aj − s) and where we use the convention that the empty product is 1.

The following formula follows from [28], formula (1) of Section 5.6 and a change of variables:∫ ∞
0

xs−1Gm,np,q

(
αxγ

∣∣∣∣ a1, . . . , ap
b1, . . . , bq

)
dx =

α−s/γ

γ

∏m
j=1 Γ(bj + s

γ )
∏n
j=1 Γ(1− aj − s

γ )∏q
j=m+1 Γ(1− bj − s

γ )
∏p
j=n+1 Γ(aj + s

γ )
. (40)

For the conditions under which this formula is valid see [28], pp. 158–159. In particular, the
formula is valid when n = 0, 1 ≤ p+ 1 ≤ m ≤ q and α > 0.

The G-function f(z) = Gm,np,q

(
z
∣∣a1,...,ap
b1,...,bq

)
satisfies the differential equation

(−1)p−m−nzT1−a1 · · ·T1−apf(z)− T−b1 · · ·T−bqf(z) = 0. (41)
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Appl. Probab. 50 (2013), pp. 1187–1205.

[22] Harper, A. J. Two new proofs of the Erdös–Kac theorem, with bound on the rate of convergence, by Stein’s
method for distributional approximations. Math. Proc. Camb. Phil. Soc. 147 (2009), pp 95–114.

[23] Koudou, A. E. and Ley, C. characterisations of GIG laws: a survey complemented with two new results.
Probab. Surv. 11 (2014), pp. 161–176.

[24] Kumar, A. N. and Upadhye, N. S. On perturbations of Stein operator. Commun. Stat. Theory 46 (2017), pp.
9284–9302.

[25] Kusuoka, S. and Tudor, C. A. Stein’s method for invariant measures of diffusions via Malliavin calculus. Stoch.
Proc. Appl. 122 (2012), pp. 1627–1651.

[26] Ley, C., Reinert, G. and Swan, Y. Stein’s method for comparison of univariate distributions. Probab. Surv. 14
(2017) pp. 1–52.

19



[27] Luk, H. Stein’s Method for the Gamma Distribution and Related Statistical Applications. PhD thesis, University
of Southern California, 1994.

[28] Luke, Y. L. The Special Functions and their Approximations, Vol. 1, Academic Press, New York, 1969.
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