[en] Background and objectives: The kidney stone’s structure might provide clinical information in addition to the stone composition. The Raman chemical imaging is a technology used for the production of two-dimension maps of the constituents' distribution in samples. We aimed at determining the use of Raman chemical imaging in urinary stone analysis.
Material and methods: Fourteen calculi were analyzed by Raman chemical imaging using a confocal Raman microspectrophotometer. They were selected according to their heterogeneous composition and morphology. Raman chemical imaging was performed on the whole section of stones. Once acquired, the data were baseline corrected and analyzed by MCR-ALS. Results were then compared to the spectra obtained by Fourier Transform Infrared spectroscopy.
Results: Raman chemical imaging succeeded in identifying almost all the chemical components of each sample, including monohydrate and dihydrate calcium oxalate, anhydrous and dihydrate uric acid, apatite, struvite, brushite, and rare chemicals like whitlockite, ammonium urate and drugs. However, proteins couldn't be detected because of the huge autofluorescence background and the small concentration of these poor Raman scatterers. Carbapatite and calcium oxalate were correctly detected even when they represented less than 5 percent of the whole stones. Moreover, Raman chemical imaging provided the distribution of components within the stones: nuclei were accurately identified, as well as thin layers of other components. Conversion of dihydrate to monohydrate calcium oxalate was correctly observed in the centre of one sample. The calcium oxalate monohydrate had different Raman spectra according to its localization.
Conclusion: Raman chemical imaging showed a good accuracy in comparison with infrared spectroscopy in identifying components of kidney stones. This analysis was also useful in determining the organization of components within stones, which help locating constituents in low quantity, such as nuclei. However, this analysis is time-consuming, making it more suitable for research studies rather than routine analysis.
Disciplines :
Laboratory medicine & medical technology Urology & nephrology
Author, co-author :
Castiglione, Vincent ; Université de Liège - ULiège > Département de pharmacie > Chimie médicale
Sacre, Pierre-Yves ; Université de Liège - ULiège > Département de pharmacie > Chimie analytique
CAVALIER, Etienne ; Centre Hospitalier Universitaire de Liège - CHU > Unilab > Service de chimie clinique
Hubert, Philippe ; Université de Liège - ULiège > Département de pharmacie > Chimie analytique
GADISSEUR, Romy ; Centre Hospitalier Universitaire de Liège - CHU > Unilab > Laboratoire biochimie automatisée et analyses délocalisées
Ziemons, Eric ; Université de Liège - ULiège > Département de pharmacie > Département de pharmacie
Language :
English
Title :
Raman Chemical Imaging, a new tool in kidney stone structure analysis: Case-study and comparison to Fourier Transform Infrared spectroscopy
Alternative titles :
[fr] La microscopie Raman, un nouvel outil pour l'analyse structurelle des calculs urinaires: étude de cas et comparaison à la scpectroscopie infrarouge à transformée de Fourrier
Publication date :
03 August 2018
Journal title :
PLoS ONE
eISSN :
1932-6203
Publisher :
Public Library of Science, United States - California
Scales CD, Smith AC, Hanley JM, Saigal CS. Prevalence of Kidney Stones in the United States. Eur Urol. 2012; 62: 160–165. https://doi.org/10.1016/j.eururo.2012.03.052 PMID: 22498635
Huang W-Y, Chen Y-F, Carter S, Chang H-C, Lan C-F, Huang K-H. Epidemiology of upper urinary tract stone disease in a Taiwanese population: a nationwide, population based study. J Urol. 2013; 189: 2158–63. https://doi.org/10.1016/j.juro.2012.12.105 PMID: 23313204
Rule AD, Lieske JC, Li X, Iii LJM, Krambeck AE, Bergstralh EJ, et al. The ROKS Nomogram for Predicting a Second Symptomatic Stone Episode. J Am Soc Nephrol. 2014; 25: 1–9.
Trinchieri A, Ostini F, Nespoli R, Rovera F, Montanari E, Zanetti G. A prospective study of recurrence rate and risk factors for recurrence after a first renal stone. J Urol. 1999; 162: 27–30. https://doi.org/10.1097/00005392-199907000-00007 PMID: 10379732
Ahlstrand C, Tiselius HG. Recurrences during a 10-year follow-up after first renal stone episode. Urol Res. 1990; 18: 397–9. PMID: 2100415
Alexander RT, Hemmelgarn BR, Wiebe N, Bello A, Morgan C, Samuel S, et al. Kidney stones and kidney function loss: a cohort study. BMJ. 2012; 345: e5287. https://doi.org/10.1136/bmj.e5287 PMID: 22936784
Skolarikos A, Straub M, Knoll T, Sarica K, Seitz C, Petřík A, et al. Metabolic evaluation and recurrence prevention for urinary stone patients: EAU guidelines. Eur Urol. 2015; 67: 750–63. https://doi.org/10.1016/j.eururo.2014.10.029 PMID: 25454613
Lieske JC, Rule AD, Krambeck AE, Williams JC, Bergstralh EJ, Mehta RA, et al. Stone composition as a function of age and sex. Clin J Am Soc Nephrol. 2014; 9: 2141–6. https://doi.org/10.2215/CJN. 05660614 PMID: 25278549
Spivacow FR, Valle EEDEL, Lores E, Rey PG. Kidney stones: composition, frequency and relation to metabolic diagnosis. Med (Buenos Aires). 2016; 76: 343–348.
Bouzidi H, Lacour B, Daudon M. 2,8-dihydroxyadenine nephrolithiasis: from diagnosis to therapy. Ann Biol Clin. 2007; 65: 585–592.
Knoll T, Schubert AB, Fahlenkamp D, Leusmann DB, Wendt-Nordahl G, Schubert G. Urolithiasis through the ages: data on more than 200,000 urinary stone analyses. J Urol. 2011; 185: 1304–11. https://doi.org/10.1016/j.juro.2010.11.073 PMID: 21334658
Kourambas J, Aslan P, Teh CL, Mathias BJ, Preminger GM. Role of stone analysis in metabolic evaluation and medical treatment of nephrolithiasis. J Endourol. 2001; 15: 181–6. https://doi.org/10.1089/ 089277901750134548 PMID: 11325090
Basiri A, Taheri M, Taheri F. What is the state of the stone analysis techniques in urolithiasis? Urol J. 2012; 9: 445–54. PMID: 22641485
Allegrini I, Febo A, Liberti A. Laser Raman microprobe for the characterization of renal lithiasis. Ann dell’Istituto Super di sanità. 1983; 19: 565–8.
Daudon M, Protat MF, Reveillaud RJ, Jaeschke-Boyer H. Infrared spectrometry and Raman microprobe in the analysis of urinary calculi. Kidney Int. Elsevier Masson SAS; 1983; 23: 842–850. https://doi.org/10.1038/ki.1983.104
Hong TD, Phat D, Plaza P, Daudon M, Dao NQ. Identification of urinary calculi by Raman laser fiber optics spectroscopy. Clin Chem. 1992; 38: 292–8. Available: http://www.ncbi.nlm.nih.gov/pubmed/ 1541013 PMID: 1541013
Guerra-López JR, Güida JA, Della Védova CO. Infrared and Raman studies on renal stones: The use of second derivative infrared spectra. Urol Res. 2010; 38: 383–390. https://doi.org/10.1007/s00240-010-0305-2 PMID: 20686758
Paluszkiewicz C, Gałka M, Kwiatek W, Parczewski A, Walas S. Renal stone studies using vibrational spectroscopy and trace element analysis. Biospectroscopy. 1997; 3: 403–407. https://doi.org/10.1002/(SICI)1520-6343(1997)3:5<403::AID-BSPY7>3.0.CO;2-2
Khalil SKH, Azooz M a, Division P. Application of Vibrational Spectroscopy in Identification of the Composition of the Urinary Stones. J Appl Sci Res. 2007; 3: 387–391.
Selvaraju R, Raja A, Thiruppathi G. FT-Raman spectral analysis of human urinary stones. Spectrochim Acta A Mol Biomol Spectrosc. 2012; 99: 205–10. https://doi.org/10.1016/j.saa.2012.09.004 PMID: 23069621
Selvaraju R, Raja A, Thiruppathi G. Chemical composition and binary mixture of human urinary stones using FT-Raman spectroscopy method. Spectrochim Acta A Mol Biomol Spectrosc. 2013; 114: 650–7. https://doi.org/10.1016/j.saa.2013.05.029 PMID: 23816485
Miernik A, Eilers Y, Bolwien C, Lambrecht A, Hauschke D, Rebentisch G, et al. Automated analysis of urinary stone composition using Raman spectroscopy: pilot study for the development of a compact portable system for immediate postoperative ex vivo application. J Urol. Elsevier Ltd; 2013; 190: 1895–900. https://doi.org/10.1016/j.juro.2013.06.024 PMID: 23770149
Aslin Shamema A, Thanigai Arul K, Senthil Kumar R, Narayana Kalkura S. Physicochemical analysis of urinary stones from Dharmapuri district. Spectrochim Acta A Mol Biomol Spectrosc. 2015; 134: 442–8. https://doi.org/10.1016/j.saa.2014.05.088 PMID: 25033236
Tonannavar J, Deshpande G, Yenagi J, Patil SB, Patil NA, Mulimani BG. Identification of mineral compositions in some renal calculi by FT Raman and IR spectral analysis. Spectrochim Acta A Mol Biomol Spectrosc. Elsevier B.V.; 2016; 154: 20–6. https://doi.org/10.1016/j.saa.2015.10.003 PMID: 26495905
Evan AP, Lingeman JE, Coe FL, Parks JH, Bledsoe SB, Shao Y, et al. Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest. 2003; 111: 607–16. https://doi.org/10.1172/JCI17038 PMID: 12618515
Dessombz A, Letavernier E, Haymann J-P, Bazin D, Daudon M. Calcium phosphate stone morphology can reliably predict distal renal tubular acidosis. J Urol. 2015; 193: 1564–9. https://doi.org/10.1016/j.juro.2014.12.017 PMID: 25498572
Williams JC, Worcester E, Lingeman JE. What can the microstructure of stones tell us? Urolithiasis. Springer Berlin Heidelberg; 2016; 45: 19–25. https://doi.org/10.1007/s00240-016-0944-z PMID: 27913855
Daudon M, Bouzidi H, Bazin D. Composition and morphology of phosphate stones and their relation with etiology. Urol Res. 2010; 38: 459–467. https://doi.org/10.1007/s00240-010-0320-3 PMID: 20967436
Kasidas GP, Samuell CT, Weir TB. Renal stone analysis: why and how? Ann Clin Biochem. 2004; 41: 91–7. https://doi.org/10.1258/000456304322879962 PMID: 15025798
Travis WD. The 2015 WHO classification of lung tumors. Pathologe. 2014; 35 Suppl 2: 188. https://doi.org/10.1007/s00292-014-1974-3 PMID: 25394966
Rashid N, Nawaz H, Poon KWC, Bonnier F, Bakhiet S, Martin C, et al. Raman microspectroscopy for the early detection of pre-malignant changes in cervical tissue. Exp Mol Pathol. Elsevier Inc.; 2014; 97: 554–564. https://doi.org/10.1016/j.yexmp.2014.10.013 PMID: 25445502
Nakamoto K, Urasaki T, Hondo S, Murahashi N, Yonemochi E, Terada K. Evaluation of the crystalline and amorphous states of drug products by nanothermal analysis and Raman imaging. J Pharm Biomed Anal. 2013; 75: 105–111. https://doi.org/10.1016/j.jpba.2012.11.020 PMID: 23246930
Siener R, Buchholz N, Daudon M, Hess B, Knoll T, Osther PJ, et al. Quality Assessment of Urinary Stone Analysis: Results of a Multicenter Study of Laboratories in Europe. Kunze G, editor. PLoS One. 2016; 11: e0156606. https://doi.org/10.1371/journal.pone.0156606 PMID: 27248840
Savitzky A, Golay MJE. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal Chem. 1964; 36: 1627–1639. https://doi.org/10.1021/ac60214a047
Eilers PHC. Parametric Time Warping. Anal Chem. American Chemical Society; 2004; 76: 404–411. https://doi.org/10.1021/ac034800e PMID: 14719890
Felten J, Hall H, Jaumot J, Tauler R, de Juan A, Gorzsás A. Vibrational spectroscopic image analysis of biological material using multivariate curve resolution–alternating least squares (MCR-ALS). Nat Pro-toc. Nature Research; 2015; 10: 217–240. https://doi.org/10.1038/nprot.2015.008 PMID: 25569330
Piqueras S, Duponchel L, Tauler R, de Juan A. Resolution and segmentation of hyperspectral biomedical images by multivariate curve resolution-alternating least squares. Anal Chim Acta. 2011; 705: 182–92. https://doi.org/10.1016/j.aca.2011.05.020 PMID: 21962361
Paudel A, Raijada D, Rantanen J. Raman spectroscopy in pharmaceutical product design. Adv Drug Deliv Rev. Elsevier B.V.; 2015; 89: 3–20. https://doi.org/10.1016/j.addr.2015.04.003 PMID: 25868453
Farhane Z, Bonnier F, Casey A, Byrne HJ. Raman micro spectroscopy for in vitro drug screening: subcellular localisation and interactions of doxorubicin. Analyst. 2015; 140: 4212–23. https://doi.org/10.1039/c5an00256g PMID: 25919793
El-Mashtoly SF, Petersen D, Yosef HK, Mosig A, Reinacher-Schick A, Kötting C, et al. Label-free imaging of drug distribution and metabolism in colon cancer cells by Raman microscopy. Analyst. 2014; 139: 1155–61. https://doi.org/10.1039/c3an01993d PMID: 24427772
Franzen L, Anderski J, Planz V, Kostka K-H, Windbergs M. Combining confocal Raman microscopy and freeze-drying for quantification of substance penetration into human skin. Exp Dermatol. 2014; 23: 942–4. https://doi.org/10.1111/exd.12542 PMID: 25219950
Xie H, Stevenson R, Stone N, Hernandez-Santana A, Faulds K, Graham D. Tracking bisphosphonates through a 20 mm thick porcine tissue by using surface-enhanced spatially offset Raman spectroscopy. Angew Chem Int Ed Engl. 2012; 51: 8509–11. https://doi.org/10.1002/anie.201203728 PMID: 22764075
Kolbach-Mandel AM, Mandel NS, Cohen SR, Kleinman JG, Ahmed F, Mandel IC, et al. Guaifenesin stone matrix proteomics: a protocol for identifying proteins critical to stone formation. Urolithiasis. 2017; 45: 139–149. https://doi.org/10.1007/s00240-016-0907-4 PMID: 27435233
Strohmaier WL, Seilnacht J, Schubert G. Clinical significance of uric acid dihydrate in urinary stones. Urol Res. 2011; 39: 357–360. https://doi.org/10.1007/s00240-010-0356-4 PMID: 21191576
Bouzidi H, de Brauwere D, Daudon M. Does urinary stone composition and morphology help for prediction of primary hyperparathyroidism? Nephrol Dial Transplant. 2011; 26: 565–572. https://doi.org/10.1093/ndt/gfq433 PMID: 20659907
Mandel NS, Mandel IC, Kolbach-Mandel AM. Accurate stone analysis: the impact on disease diagnosis and treatment. Urolithiasis. 2016; https://doi.org/10.1007/s00240-016-0943-0 PMID: 27915396
Castiglione V, Jouret F, Bruyère O, Dubois B, Thomas A, Waltregny D, et al. Epidemiology of urolithiasis in Belgium on the basis of a morpho-constitutional classification. Nephrol Ther. 2015; 11: 42–49. https://doi.org/10.1016/j.nephro.2014.08.003 PMID: 25488796
He Z, Jing Z, Jing-Cun Z, Chuan-Yi H, Fei G. Compositional analysis of various layers of upper urinary tract stones by infrared spectroscopy. Exp Ther Med. 2017; 3165–3169. https://doi.org/10.3892/etm.2017.4864 PMID: 28912866
Muhammed Shameem KM, Chawla A, Mallya M, Barik BK, Unnikrishnan VK, Kartha VB, et al. LIBS-Raman: an effective complementary approach to analyze renal-calculi. J Biophotonics. 2018.
Grases F, Costa-Bauzá A, Ramis M, Montesinos V, Conte A. Simple classification of renal calculi closely related to their micromorphology and etiology. Clin Chim Acta. 2002; 322: 29–36. https://doi.org/10.1016/S0009-8981(02)00063-3 PMID: 12104078
Daudon M, Dessombz A, Frochot V, Letavernier E, Haymann JP, Jungers P, et al. Comprehensive mor-pho-constitutional analysis of urinary stones improves etiological diagnosis and therapeutic strategy of nephrolithiasis. Comptes Rendus Chim. Elsevier Ltd; 2016; 19: 1470–1491. https://doi.org/10.1016/j.crci.2016.05.008
Daudona M, Jungers P. Clinical value of crystalluria and quantitative morphoconstitutional analysis of urinary calculi. Nephron—Physiol. Elsevier Ltd; 2004; 98: 624–632. https://doi.org/10.1159/000080261PMID: 15499212
Taguchi K, Hamamoto S, Okada A, Unno R, Kamisawa H, Naiki T, et al. Genome-Wide Gene Expression Profiling of Randall’s Plaques in Calcium Oxalate Stone Formers. J Am Soc Nephrol. 2017; 28: 333–347. https://doi.org/10.1681/ASN.2015111271 PMID: 27297950
Daudon M, Bazin D, André G, Jungers P, Cousson A, Chevallier P, et al. Examination of whewellite kidney stones by scanning electron microscopy and powder neutron diffraction techniques. J Appl Cryst. 2009; 42: 109–115. https://doi.org/10.1107/S0021889808041277
Daudon M, Jungers P, Bazin D. Peculiar morphology of stones in primary hyperoxaluria. N Engl J Med. 2008; 359: 100–2. https://doi.org/10.1056/NEJMc0800990 PMID: 18596285
Daudon M, Jungers P, Bazin D, Williams JC. Recurrence rates of urinary calculi according to stone composition and morphology. Urolithiasis. Springer Berlin Heidelberg; 2018; 0: 0. https://doi.org/10.1007/s00240-018-1043-0 PMID: 29392338
Conti C, Casati M, Colombo C, Realini M, Brambilla L, Zerbi G. Phase transformation of calcium oxalate dihydrate-monohydrate: Effects of relative humidity and new spectroscopic data. Spectrochim Acta—Part A Mol Biomol Spectrosc. Elsevier B.V.; 2014; 128: 413–419. https://doi.org/10.1016/j.saa.2014.02. 182 PMID: 24682057
Duan X, Qu M, Wang J, Trevathan J, Vrtiska T, Williams JC, et al. Differentiation of calcium oxalate monohydrate and calcium oxalate dihydrate stones using quantitative morphological information from micro-computerized and clinical computerized tomography. J Urol. 2013; 189: 2350–2356. https://doi.org/10.1016/j.juro.2012.11.004 PMID: 23142201
Carvalho M, Vieira M a. Changes in calcium oxalate crystal morphology as a function of supersaturation. Int Braz J Urol. 2004; 30: 205–8; discussion 209. Available: http://www.ncbi.nlm.nih.gov/pubmed/ 15689248 PMID: 15689248
Pierratos AE, Khalaff H, Cheng PT, Psihramis K, Jewett MA. Clinical and biochemical differences in patients with pure calcium oxalate monohydrate and calcium oxalate dihydrate kidney stones. J Urol. 1994; 151: 571–574. Available: http://www.ncbi.nlm.nih.gov/pubmed/8308959 PMID: 8308959
Koide T, Itatani H, Yoshioka T, Ito H, Namiki M, Nakano E, et al. Clinical manifestations of calcium oxalate monohydrate and dihydrate urolithiasis. J Urol. 1982; 127: 1067–1069. Available: http://www.ncbi.nlm.nih.gov/pubmed/7087010 PMID: 7087010
Singh P, Enders FT, Vaughan LE, Bergstralh EJ, Knoedler JJ, Krambeck AE, et al. Stone Composition Among First-Time Symptomatic Kidney Stone Formers in the Community. Mayo Clin Proc. 2015; 90: 1356–1365. https://doi.org/10.1016/j.mayocp.2015.07.016 PMID: 26349951
Blanco F, Ortiz-Alías P, López-Mesas M, Valiente M. High precision mapping of kidney stones using μ-IR spectroscopy to determine urinary lithogenesis. J Biophotonics. 2015; 8: 457–465. https://doi.org/10.1002/jbio.201300201 PMID: 25091212
Hesse A, Kruse R, Geilenkeuser W-J, Schmidt M. Quality control in urinary stone analysis: results of 44 ring trials (1980–2001). Clin Chem Lab Med. 2005; 43: 298–303. https://doi.org/10.1515/CCLM.2005. 051 PMID: 15843235
Williams JC, McAteer JA, Evan AP, Lingeman JE. Micro-computed tomography for analysis of urinary calculi. Urol Res. 2010; 38: 477–84. https://doi.org/10.1007/s00240-010-0326-x PMID: 20967434
Gilad R, Williams JC, Usman KD, Holland R, Golan S, Tor R, et al. Interpreting the results of chemical stone analysis in the era of modern stone analysis techniques. J Nephrol. 2016; https://doi.org/10.1007/ s40620-016-0274-9 PMID: 26956131
Tang M, McEwen GD, Wu Y, Miller CD, Zhou A. Characterization and analysis of mycobacteria and Gram-negative bacteria and co-culture mixtures by Raman microspectroscopy, FTIR, and atomic force microscopy. Anal Bioanal Chem. 2013; 405: 1577–1591. https://doi.org/10.1007/s00216-012-6556-8 PMID: 23196750
Daudon M, Bazin D. Vibrational spectroscopies to investigate concretions and ectopic calcifications for medical diagnosis. Comptes Rendus Chim. 2016; 19: 1416–1423. https://doi.org/10.1016/j.crci.2016.05.011
Krafft C, Codrich D, Pelizzo G, Sergo V. Raman and FTIR microscopic imaging of colon tissue: a comparative study. J Biophotonics. 2008; 1: 154–169. https://doi.org/10.1002/jbio.200710005 PMID: 19343646
Matthäus C, Bird B, Miljković M, Chernenko T, Romeo M, Diem M. Chapter 10: Infrared and Raman microscopy in cell biology. Methods Cell Biol. 2008; 89: 275–308. https://doi.org/10.1016/S0091-679X (08)00610-9 PMID: 19118679
Huguet L, Le Dudal M, Livrozet M, Bazin D, Frochot V, Perez J, et al. High frequency and wide range of human kidney papillary crystalline plugs. Urolithiasis. Springer Berlin Heidelberg; 2017; 0: 0. https://doi.org/10.1007/s00240-017-1031-9 PMID: 29234857
Luque Y, Louis K, Jouanneau C, Placier S, Esteve E, Bazin D, et al. Vancomycin-Associated Cast Nephropathy. J Am Soc Nephrol. 2017; https://doi.org/10.1681/ASN.2016080867 PMID: 28082518
Englert KM, McAteer JA, Lingeman JE, Williams JC. High carbonate level of apatite in kidney stones implies infection, but is it predictive? Urolithiasis. 2013; 41: 389–394. https://doi.org/10.1007/s00240-013-0591-6 PMID: 23881525
Epstein JI, Amin MB, Beltran H, Lotan TL, Mosquera J-M, Reuter VE, et al. Proposed morphologic classification of prostate cancer with neuroendocrine differentiation. Am J Surg Pathol. 2014; 38: 756–67. https://doi.org/10.1097/PAS.0000000000000208 PMID: 24705311
Hollon T, Lewis S, Freudiger CW, Sunney Xie X, Orringer DA. Improving the accuracy of brain tumor surgery via Raman-based technology. Neurosurg Focus. 2016; 40: E9. https://doi.org/10.3171/2015.12.FOCUS15557 PMID: 26926067
Miernik A, Eilers Y, Nuese C, Bolwien C, Lambrecht A, Hesse A, et al. Is in vivo analysis of urinary stone composition feasible? Evaluation of an experimental setup of a Raman system coupled to commercial lithotripsy laser fibers. World J Urol. 2015; 33: 1593–9. https://doi.org/10.1007/s00345-014-1477-0 PMID: 25557944
Kumar R, Grønhaug KM, Afseth NK, Isaksen V, de Lange Davies C, Drogset JO, et al. Optical investigation of osteoarthritic human cartilage (ICRS grade) by confocal Raman spectroscopy: a pilot study. Anal Bioanal Chem. 2015; 407: 8067–77. https://doi.org/10.1007/s00216-015-8979-5 PMID: 26319282
Mandair GS, Morris MD. Contributions of Raman spectroscopy to the understanding of bone strength. Bonekey Rep. 2015; 4: 620. https://doi.org/10.1038/bonekey.2014.115 PMID: 25628882