Article (Scientific journals)
Random Forests based group importance scores and their statistical interpretation: application for Alzheimer’s disease
Wehenkel, Marie; Sutera, Antonio; Bastin, Christine et al.
2018In Frontiers in Neuroscience, 12, p. 411
Peer Reviewed verified by ORBi
 

Files


Full Text
fnins-12-00411.pdf
Publisher postprint (3.22 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Machine learning; Random forests; Feature selection; Group based method; Prognosis system; FDG PET; Alzheimer's disease
Abstract :
[en] Machine learning approaches have been increasingly used in the neuroimaging field for the design of computer-aided diagnosis systems. In this paper, we focus on the ability of these methods to provide interpretable information about the brain regions that are the most informative about the disease or condition of interest. In particular, we investigate the benefit of group-based, instead of voxel-based, analyses in the context of Random forests. Assuming a prior division of the voxels into non overlapping groups (defined by an atlas), we propose several procedures to derive group importances from individual voxel importances derived from random forests models. We then adapt several permutation schemes to turn group importance scores into more interpretable statistical scores that allow to determine the truly relevant groups in the importance rankings. The good behavior of these methods is first assessed on artificial datasets. Then, they are applied on our own dataset of FDG-PET scans to identify the brain regions involved in the prognosis of Alzheimer's disease.
Research Center/Unit :
GIGA CRC (Cyclotron Research Center) In vivo Imaging-Aging & Memory - ULiège
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Wehenkel, Marie ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Sutera, Antonio ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
Bastin, Christine  ;  Université de Liège - ULiège > Département des sciences cliniques > Neuroimagerie des troubles de la mémoire et révalid. cogn.
Geurts, Pierre   ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
Phillips, Christophe   ;  Université de Liège - ULiège > GIGA-CRC In vivo Imaging
 These authors have contributed equally to this work.
Language :
English
Title :
Random Forests based group importance scores and their statistical interpretation: application for Alzheimer’s disease
Publication date :
29 June 2018
Journal title :
Frontiers in Neuroscience
ISSN :
1662-4548
eISSN :
1662-453X
Publisher :
Frontiers Media S.A., Switzerland
Special issue title :
Machine Learning in Imaging Neurodevelopment and Neurodegeneration
Volume :
12
Pages :
411
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Available on ORBi :
since 29 June 2018

Statistics


Number of views
181 (35 by ULiège)
Number of downloads
140 (17 by ULiège)

Scopus citations®
 
18
Scopus citations®
without self-citations
17
OpenCitations
 
10
OpenAlex citations
 
19

Bibliography


Similar publications



Contact ORBi