[en] Likelihood ratio tests are a key tool in many fields of science. In order to evaluate the likelihood ratio the likelihood function is needed. However, it is common in fields such as High Energy Physics to have complex simulations that describe the distribution while not having a description of the likelihood that can be directly evaluated. In this setting it is impossible or computationally expensive to evaluate the likelihood. It is, however, possible to construct an equivalent version of the likelihood ratio that can be evaluated by using discriminative classifiers. We show how this can be used to approximate the likelihood ratio when the underlying distribution is a weighted sum of probability distributions (e.g. signal plus background model). We demonstrate how the results can be considerably improved by decomposing the ratio and use a set of classifiers in a pairwise manner on the components of the mixture model and how this can be used to estimate the unknown coefficients of the model, such as the signal contribution.
Disciplines :
Physics Computer science
Author, co-author :
Cranmer, K.; Physics Department, New York University, New York, NY 10003, U.S.A.
Pavez, J.; Informatics Department, Universidad Técnica Federico Santa María, 1680 Av. España, Valparaíso, Chile
Louppe, Gilles ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Big Data
Brooks, W. K.; Physics Department, Universidad Técnica Federico Santa María and Center for Science and Technology of Valparaíso, 1680 Av. España, Valparaíso, Chile)
Language :
English
Title :
Experiments using machine learning to approximate likelihood ratios for mixture models
Publication date :
21 November 2016
Event name :
17th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2016)
Cowan G, Cranmer K, Gross E and Vitells O 2010 Eur.Phys.J. C71 1554 Preprint 1007.1727 URL http://arxiv.org/abs/1007.1727
The ATLAS Collaboration 2012 Phys.Lett. B716 1-29 Preprint 1207.7214
The CMS Collaboration 2012 Phys.Lett. B716 30-61 Preprint 1207.7235
Cranmer K, Lewis G, Moneta L, Shibata A and Verkerke W 2012 CERN-OPEN-2012-016 http://inspirehep.net/record/1236448
Cranmer K, Pavez J and Louppe G 2016 ArXiv e-prints http://arxiv.org/abs/1506.02169Preprint1506.02169
Verkerke W and Kirkby D P 2003 eConf C0303241 MOLT007 Preprint physics/0306116
Cranmer K S 2001 Comput. Phys. Commun. 136 198-207 Preprint hep-ex/0011057
Verkerke W and Kirkby D 2003 Statistical Problems in Particle Physics, Astrophysics and Cosmology, edited by L. Lyons and MK Ünel 186-190
Bergstra J, Breuleux O, Bastien F, Lamblin P, Pascanu R, Desjardins G, Turian J, Warde-Farley D and Bengio Y 2010 Theano: a CPU and GPU math expression compiler Proceedings of the Python for Scientific Computing Conference (SciPy)
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M and Duchesnay E 2011 Journal of Machine Learning Research 12 2825-2830