Unpublished conference/Abstract (Scientific congresses and symposiums)
Kernelized goodness-of- fit tests for discrete variables
Ernst, Marie; Swan, Yvik
2018Modern Mathematical Methods for Data Analysis
 

Files


Full Text
MMMDA_MErnst.pdf
Author preprint (736.34 kB)
Presentation
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Stein's method; Discrete variable; goodness-of-fit
Abstract :
[en] In this talk, we review goodness-of-fit tests for discrete distributions and propose an alternative family of tests based on a kernelized Stein discrepancy. This measure is an expectation based on Stein’s operator associated to the target distribution. It has some useful theoretical and asymptotic properties and, furthermore, it can be empirically estimated. A key ingredient for this procedure is the choice of an adequate kernel which may be related to the target distribution. In order to illustrate the efficiency of these tests, we resort to empirical analysis by simulations based on the Binomial case and “close” distributions with respect to the total variation distance.
Research Center/Unit :
UR Mathematics
Disciplines :
Mathematics
Author, co-author :
Ernst, Marie  ;  Université de Liège - ULiège > Département de mathématique > Statistique mathématique
Swan, Yvik ;  Université de Liège - ULiège > Département de mathématique > Probabilités et statistique mathématique
Language :
English
Title :
Kernelized goodness-of- fit tests for discrete variables
Publication date :
05 June 2018
Event name :
Modern Mathematical Methods for Data Analysis
Event organizer :
Yvik Swan (ULiège), Guillaume Mijoule (ULiège) and Thomas Gallouët (Paris)
Event place :
Liège, Belgium
Event date :
4-6 June 2018
By request :
Yes
Audience :
International
Available on ORBi :
since 08 June 2018

Statistics


Number of views
85 (7 by ULiège)
Number of downloads
122 (6 by ULiège)

Bibliography


Similar publications



Contact ORBi