Kernelized goodness-of-fit tests for discrete
variables

Marie ERNST* and Yvik SWAN

University of Liege, Belgium

Liege, June 5th, 2018



@ General principles



Target distribution £°

General context

e £0 admits a Stein operator 7? acting on a collection F° of
functions f : IR — IR, i.e.,

E[T°f(X)] = 0 Vf € FOiff X ~ L°
o If X ~ L9, for some linear operator D, we suppose
E[T°f(X)g(X)] = —E[f(X)Dg(X)]

for all f € F° and all appropriate g.



Target distribution £°

Gaussian case

® N(0,1) admits the Stein operator 7°f(x) = f'(x) — xf(x)
acting on F° = {abs. cont. function f : R — IR st f' € L'},
ie.,

X ~ N(0,1) iff
E[Xf(X)] = E[f'(X)] Vf € F°

e if X ~N(0,1), for all f € F°, we have
E[(f'(X) — Xf(X))g(X)] = —E[f(X)g'(X)]

for all g for which these expectations exist.



Stein kernel and Fisher information

If £9is continuous and X ~ L9, for all f € FO, we have
E[T%f(X)g(X)] = —E[f(X)g'(X)]

for all g for which these expectations exist.

Score and Fisher information
For f(x) =1,

e T91(x) = p(
* E[(T°1(X))*] = Z(X)

= Score

Stein kernel
For T%f(x) = x — p,
® 7(x) = f(x) = Stein kernel

* E[(7(X))?*] = S(X)



Kernelizing the Stein identities

2-Stein kernel
A function k : IR?> — TR for which both marginals x — k(x, x") and
x > k(x',x) are in F0 at all x'.

Considering the function K(x,x') = TT k(x,x'), we get a
relation between k and K:

E[k(X, X' )Dg1(X)Dga(X')] = E[K (X, X")g1(X)g2(X)]

for appropriate g1, g».



@® Kernelized discrepancy



Discrepancy between £° and £!

k-based kernelized Stein discrepancy
Considering Y, Y’ "L L1 and following Chwialkowski et al (2016)
and Liu et al (2016), we define

Sk(£, L0) :=E [K(Y,Y")] =E[TT2k(Y,Y")]

Gaussian case

K(x,y) = 0x0yk(x,y) — yOxk(x, y)
_Xayk(xa)’) + ka(Xay)

and Sk (LY, £°) = E[K(Y, Y")] for any Y, Y’ "5 1.



Continuous case
If the distribution £° (resp. £!) admits the Stein operator

TOf(x) = f'(x) + p°(x)f(x) (resp. T F(x) = f'(x) + p*(x)f(x)),
we have, for Y ~ L1,

E[TF(Y)] = E[f(Y) + po(Y)F(Y)] = E[(po — p1)(Y)f(Y)]



Continuous case
If the distribution £° (resp. £!) admits the Stein operator

TOf(x) = f'(x) + p°(x)f(x) (resp. T F(x) = f'(x) + p'(x)f(x)),
we have, for Y ~ L1,
E[T?F(Y)] = E[f(Y) + po(Y)F(Y)] = El(po — p1)(Y)F(Y)]
Fisher information distance
Z(£L°% L) = E[(po(Y) — pr(Y))’]



Continuous case
If the distribution £° (resp. £!) admits the Stein operator

TOf(x) = f'(x) + p°(x)f(x) (resp. T F(x) = f'(x) + p'(x)f(x)),
we have, for Y ~ L1,
E[T?F(Y)] = E[f(Y) + po(Y)F(Y)] = El(po — p1)(Y)F(Y)]
Fisher information distance
Z(£L°% L) = E[(po(Y) — pr(Y))’]

Generalized Fisher information

Ify, vy &

Sk(Lh, L) = E[TLTRk(Y, Y')]
=E[(po(Y) = p1(Y))T(Y, Y")]
=E[(po(Y) = pr(YDK(Y, Y)(po(Y') = pr(Y"))]



Discrepancy between £° and £!

Proposition
If k admits a representation of the form

)= ajei(x)ei(x
j=0

where o; > 0 and (ej);>o a basis of F°, then
g j )i>

L4 SK(,CI,,CO) >0
o Sk(LY,£0) =0 iff £0 = L.

Estimation of kernelized Stein discrepancy
Given a sample Yi,..., Y, ~ L1,

S(y,..., Y, = n—lZZK

1<l7éj<n

Y)).
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Asymptotic behavior

Theorem
Using asymptotic properties of U-statistics (Serfling (2009))

@O If L1 # Lo, then
Vi (800, Ya) = Sk(£1,£9)) 5 N (0,02)

where 02 = Var [E[K(Y, Y")| Y]] # 0.
@ If L1 = Lo, then

iSOV, V) S ST N(Z2 -
j=0

where Z; hg- N(0,1) and {\;} are the eigenvalues of the
operator A where Ag(x) = E[g(X)K(X,X") | X = x].



Goodness of fit test

kernelized Stein based test statistic A
For Ho: Lo = L1 vs H1: Lo # L1, RHyg if S&g)(yl, ey Yn) s

larger than the quantile of the limit distribution under the null.

Drawback
In general, the asymptotic null distribution is intractable.
= We use bootstrap
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Choosing a 2-Stein kernel

Mehler kernel

1 p*(x* + %) — 2pxy
Kbor) = =7 ™)
=3 L Ha(x)Ha(y)
n=0
for p € (—1,1).

Radial basis function kernel

k(x,y) =exp (—(x — y)?/2)
X 2 J 2
_ o212 Y o—y2)2

"2
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Choosing a kernel

Kernel associated to 7°
If (&)j>0 is an ONB of F?, the kernel could be

k(x,x') = ajej(x)ei(x)
j=0

Examples

e If £ is Gaussian: Hermite polynomials
e If £0 is Beta: Jacobi polynomials

e If £°is Gamma: Laguerre polynomials
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© Discrete distributions
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Discrete context

Notations
® Probability mass function p
® Support of p: § ={0,...,n} for some n € INU {oo}
® Finite difference operators:

F(x + 0) — ()
¢

A'f(x) =

* [1(p) denotes the collection of g : Z — IR such that
Eflg(X)I] = 27=0 lg(x)Ip(x) < oc.
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Discrete operator

Stein operator
(Ley, Reinert and Swan 2017)

® Canonical discrete /—Stein operator:

iy AUF)R()
T () p(x)
NB: convention: 7;ef(x) =0ifx¢S.

e Canonical discrete ¢—Stein class: F*(p) is the collection of
f:Z—Rstfelp)and T f € L*(p) has mean 0.

Particular cases

* Forward Stein operator: 7,5 f(x) if £ =1

® Backward Stein operator: 7, f(x) if £ = —1
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Properties of canonical operators

A’ respects the following product formula:

Ae(f(x)g(x)) = (Aef(x))g(x +0) + f(x) (Aeg(x))

Then sz respects the following relations:

75 (r0)e) = (7 D+ 02D g0

= (77ff(x))g(x +0) + f(x) (Aeg(x))
By definition of Stein operator, we deduce the “Stein identities”:

* E[f(X)g(X)] =E [f(X + 0g(X + ) 25]]

o E[(TH(X))g(X +¢)] = —E [f(X)(A%(X))]
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Properties of canonical operators

A’ respects the following product formula:

Ae(f(x)g(x)) = (Aef(x))g(x +0) + f(x) (Aeg(x))

Then sz respects the following relations:

75 (r0)e) = (7 D+ 02D g0

= (77ff(x))g(x +0) + f(x) (Aeg(x))
By definition of Stein operator, we deduce the “Stein identities”:

* E[f(X)g(X)] = E[f(X + 0g(X + )25 ]

o E[(TH(X))g(X +¢)] = —E [f(X)(A%(X))]
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A class of discrete distributions

Class of discrete distributions
Focus on distributions p which satisfy a recurrence relation

p(x+0) = Zﬁjp(x)

or, equivalently

1 (a(x) — b(x)
A’p(x) = 7 <b(x)> p(x)

with a,b: Z — IR two “well-behaved” functions.

Stein operators
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A class of discrete distributions

Class of discrete distributions
Focus on distributions p which satisfy a recurrence relation

pa+@:§3ma

or, equivalently

1 [a(x) — b(x)
A’p(x) = 7 (b(x)) p(x)

with a,b: Z — IR two “well-behaved” functions.

Stein operators

T (F00e0)) = 7 (lx+ 0t + 07— (e )
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A class of discrete distributions

Class of discrete distributions
Focus on distributions p which satisfy a recurrence relation

pa+@:§3ma

or, equivalently

1 [a(x) — b(x)
Af S i SOV SV
with a,b: Z — IR two “well-behaved” functions.

Stein operators

T (F00e0)) = 7 (lx+ 0t + 07— (e )

~ Natural choice for f: f(x +¢) = b(x)



A class of discrete distributions

Class of discrete distributions
Focus on distributions p which satisfy a recurrence relation

pw+m=§3mm

or, equivalently
A = (5% ot
with a,b: Z — IR two “well-behaved” functions.
Stein operators
Atg(x) == g(x + £)a(x) — g(x)b(x — £)
Asg(x) = a(x) (8% (x)) + r(x)g(x)

where r(x) = T f(x) = (a(x) — b(x — £))/¢
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Binomial (n, p)

° p(x) = (0)p*(1 — p)" > for x € {0,...,n}

Examples
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Binomial (n, p)
° p(x) = (0)p*(1 — p)" > for x € {0,...,n}
px+1)  pn—x)

p(x)  (x+1)(1-p)

Examples
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Examples

Binomial (n, p)
° p(x) = (0)p*(1 — p)" > for x € {0,...,n}
CpbetD)  p(n—x)

p6) D -p)
o AFF(x) = p(n — x)F(x +1) = x(1 - p)F(x)
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Examples

Binomial (n, p)
° p(x) = (0)p*(1 — p)" > for x € {0,...,n}
px+1)  pn—x)

p(x)  (x+1)(1-p)
o AT f(x):=p(n—x)f(x+1) —x(1 - p)f(x)
® ASf(x):= p(n— x)ATF(x) + (x — np)f(x)
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Examples

Binomial(n, p) Poisson(\)

p() = (1)p (= p)"=* p(x) = e A (x)) !
x€{0,...,n} x €N

a(x) = p(n — x) a(x) =X

b(x) = (x + 1)(1 - p) b(x) = x + 1

r(x) =x — np r(x) =x—2X

Beta binomial(c,

B, n)

p(x) = (1) Bla +x,n+ B — x)(B(ar, B)) 7

xe€A{0,..., n}

a(x) = (n — x)(a + x)

b(x) = (x + D)(n+ B — (x + 1))
r(x) = (a+ B)x — na

o = () () (1)
x € {0

e {0,..., n}
a(x) = #(n — x)(R — x)
b(x) = §(x+1)
r(x) =x— n%

Panjer(a, 3, po)

Ord family (1968)

p(x) = (a+ ﬁ) p(x = 1); po = p(0)
x €N

ax)=a(x+1)+ 8

b(x) =x+1
rix)=x1—a)+ B —a

Ap(x — 1) =
x € IN

a(x) = co + cix + cox?
b(x) = dp + dix + dox?
r(x) =ry + nx

G0
bo+byx+byx(x—1)

)]

Fulman-Goldstein(q, m, n) (finite case)

Fulman-Goldstein(gq,

m) (limit case)

() T (=g~ T2 4y (1=a )

p(x) =gq - -
) 75 a-e=H I ¥ a—e=")

a(
b(x) = (g1 — 1)(g™P — 1)
r(x) = (g€ — D)(@™ — 1) — g(1 — g~ ")

p(x) = q—x(m+x) 12,41 (1 — q—i) ( :n;Ex
x € IN

(X) =

b(x) = ( — 1)(qmTH — 1)

r(x) = (¢ = (@™ = 1) —

a-q) "
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Fisher information and Stein kernel
If £0is discrete and X ~ L9, for all f € F9, we have
E[T°f(X)g(X)] = —E[f(X)Dg(X)]

for all g for which these expectations exist. For Y ~ g,

p-score and Fisher information

e p-score for Y: p(Y) st E[p(Y)g(Y)] =E[b(Y — 1)A~g(Y)]
® a Fisher information: E[(T°f(Y))?] = E[(p(Y))?] = Zn(q)

p-kernel

o p-kernel for Y: 7(Y) st E[r(Y)g(Y)] =E[r(Y)A™g(Y)]
® a Stein information: E [(7(Y))?]
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p-score and p-kernel: example

Binomial(n, p)
® Binomial score for distributions on IN : p(Y) st
E[p(Y)e(Y)] =E[(1 - p)YA~g(Y)]
¢ Binomial kernel for distributions on IN : 7(Y) st
E[r(Y)A™g(Y)] = E[(Y — np)g(Y)]

If X ~ Bin(n, p), p(X) =X —np and 7(X) = (1 — p)X.
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O lllustration: simulations
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Goodness-of-fit tests

Goodness-of-fit tests for discrete distributions

® Pearson Chi-squared test

25



Goodness-of-fit tests

Goodness-of-fit tests for discrete distributions

® Pearson Chi-squared test

e Larger family: power-divergence statistics

20T = A(;H)Z O [((E)y — 1]

i=1
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Goodness-of-fit tests

Goodness-of-fit tests for discrete distributions

® Pearson Chi-squared test

e Larger family: power-divergence statistics

k A
A 2 (%Y _
2nT" = O+ D) 2 O, E 1

1

® Even larger family: ¢-divergence defined by Csiszar (1967):

k

Dy =Y Ei¢(Oi/E)

i=1
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Examples of GOF statistics

Particular power-divergence statistics

® )\ = 1: Pearson chi-square

® \ = 0: log-likelihood ratio G2

® \ = —1/2: Freeman-Tukey or Hellinger distance statistics H?
e )\ = —1: modified log-likelihood ratio statistics GM

® )\ = —2: Neyman's modified chi-square statistic

A = 2/3: Cressie and Read statistic

Particular ¢-divergence statistics

The choice of 1

AN+ 1)

leads to the power divergence statistic.

(X)\—i-l _ X)

P(x) =

26



Goodness-of-fit tests

Comparison of GOF tests

@ Power divergence tests:

Pearson (A =1)

Cressie-Read (A = 2/3)

loglikelihood ratio (A = 0)

Freeman Tukey (A = —1/2)

modified loglikelihood ratio (A = —1)
Neyman modified chi-squared (A = —2)

® Kernelized discrepancy tests:

® Using a RBF kernel
® Using a kernel defined by Afendras et al's polynomials
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Afendras polynomials

Afendras et al (2011) polynomials
Discrete orthogonal polynomials Py (x) which satisfy the identify

E[Pc(X)g(X)] = E[r%(X)g™(X)]
where 7 is the Stein kernel of X.

Adhoc discrete 2-Stein kernel
Considering N + 1 polynomials (N =0,...,n),

N
)= aPi(x)Pi(x)
j=0
where aJ p[PQ( )]-
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Test for binomiality

Target distribution
Binomial (n, p)

Alternative distribution

@ Binomial (n2, p2)

@ Beta Binomial (o, 3, n) with p = 53

© Hypergeometric (n, N, R) with p = R/N

@ Poisson binomial, i.e., sum of indep. Bern(p;)

® A sum of indicators with some totally correlated, i.e.,
Bin(n — j, p) ® jBern(p) for j =2,...,n—2.
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Some results

Beta Binomial (v, 8, n) vs Bin(10,0.1)

Bin(10, 0.1) vs BB(alpha, alpha(1-p)ip, 10)

H Tests

£ — X2

: CR

i G2

L — FT

GM

— NM

-, — — RBF Kernel

\-§5§2}3E: — Kemel with Afendras pol.

alpha
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Beta Binomial (v, 8, n) vs Bin(10,0.1)

Praportion of rejections

Focus on Afendras pol. kernel

slphe

Some results

Tests

X2
RBF Kernel

Kernel with 1 Af. pol.
Kernel with 2 Af. pol.
Kernel with 3 Af. pol.
Kernel with 4 Af. pol.
Kernel with 5 Af. pol.
Kernel with 6 Af. pol.
Kernel with 7 Af. pol.
Kernel with 8 Af. pol.
Kernel with 9 Af. pol.
Kernel with 10 Af. pol.
Kernel with 11 Af. pol.
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Some results

Hypergeometric (n, N, 2) vs Bin(10,0.1)

Bin(10,0.1) vs H(10,20,2)

. Tests
«;i ER — X2
= . CR
£ G2
2 I L FT
B GM
— NM
= — RBF Kernel
— Kernel with Afendras pol.

T T T T T T T
20 a0 80 20 100 120 140
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Some results

Hypergeometric (n, N, 2) vs Bin(10,0.1)

Focus on Afendras pol. kernel

10

Propattion of rajectians
o8
I

04

0z
I

T
20 4 e 80 100 120 140

Sample size

X2

Tests

RBF Kernel

Kernel with 1 Af. pol.
Kernel with 2 Af. pol.
Kernel with 3 Af. pol.
Kernel with 4 Af. pol.
Kernel with 5 Af. pol.
Kernel with 6 Af. pol.
Kernel with 7 Af. pol.
Kernel with 8 Af. pol.
Kernel with 9 Af. pol.
Kernel with 10 Af. pol.
Kernel with 11 Af. pal.
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Preliminary conclusions

When the samples are drawn from another family of distributions
than the target one,
e the discrepancy tests have similar/better power than power
divergence tests;
® 3 kernel associated to the target distribution is more adequate
than an arbitrary kernel;

® the power increases with the number of polynomials used in
the kernel.

When the samples are drawn from the same family of distributions,
tests based on the first polynomial seems to have the best power.
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@ Perspectives
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Perspectives

® Optimization of the choice of kernel for each distribution?
® Null and non-null distribution?

® Extension to the multivariate case?
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