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Target distribution L0

General context

• L0 admits a Stein operator T 0 acting on a collection F0 of
functions f : IR→ IR, i.e.,

E[T 0f (X )] = 0 ∀f ∈ F0 iff X ∼ L0

• If X ∼ L0, for some linear operator D, we suppose

E[T 0f (X )g(X )] = −E[f (X )Dg(X )]

for all f ∈ F0 and all appropriate g .
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Target distribution L0

Gaussian case

• N (0, 1) admits the Stein operator T 0f (x) = f ′(x)− xf (x)
acting on F0 = {abs. cont. function f : IR→ IR st f ′ ∈ L1},
i.e.,

X ∼ N (0, 1) iff

E[Xf (X )] = E[f ′(X )] ∀f ∈ F0

• if X ∼ N (0, 1), for all f ∈ F0, we have

E[(f ′(X )− Xf (X ))g(X )] = −E[f (X )g ′(X )]

for all g for which these expectations exist.
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Stein kernel and Fisher information

If L0 is continuous and X ∼ L0, for all f ∈ F0, we have

E[T 0f (X )g(X )] = −E[f (X )g ′(X )]

for all g for which these expectations exist.

Score and Fisher information
For f (x) = 1,

• T 01(x) = p′(x)
p(x) = score

• E[(T 01(X ))2] = I(X )

Stein kernel
For T 0f (x) = x − µ,

• τ(x) = f (x) = Stein kernel

• E[(τ(X ))2] = S(X )
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Kernelizing the Stein identities

2-Stein kernel
A function k : IR2 → IR for which both marginals x 7→ k(x , x ′) and
x 7→ k(x ′, x) are in F0 at all x ′.

Considering the function K (x , x ′) = T 0
1 T 0

2 k(x , x ′), we get a
relation between k and K :

E[k(X ,X ′)Dg1(X )Dg2(X ′)] = E[K (X ,X ′)g1(X )g2(X ′)]

for appropriate g1, g2.
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Discrepancy between L0 and L1

k-based kernelized Stein discrepancy

Considering Y ,Y ′
i .i .d .∼ L1 and following Chwialkowski et al (2016)

and Liu et al (2016), we define

SK (L1,L0) := E
[
K (Y ,Y ′)

]
= E

[
T 0

1 T 0
2 k(Y ,Y ′)

]
Gaussian case

K (x , y) = ∂x∂yk(x , y)− y∂xk(x , y)

−x∂yk(x , y) + xyk(x , y)

and SK (L1,L0) = E [K (Y ,Y ′)] for any Y ,Y ′
i .i .d .∼ L1.
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Continuous case
If the distribution L0 (resp. L1) admits the Stein operator

T 0f (x) = f ′(x) + ρ0(x)f (x) (resp. T 1f (x) = f ′(x) + ρ1(x)f (x)),

we have, for Y ∼ L1,

E[T 0f (Y )] = E[f (Y ) + ρ0(Y )f (Y )] = E[(ρ0 − ρ1)(Y )f (Y )]

Fisher information distance

I(L0,L1) = E[(ρ0(Y )− ρ1(Y ))2]

Generalized Fisher information
If Y ,Y ′

i .i .d .∼ L1,

SK (L1,L0) = E[T 0
1 T 0

2 k(Y ,Y ′)]

= E[(ρ0(Y )− ρ1(Y ))T 0
2 k(Y ,Y ′)]

= E[(ρ0(Y )− ρ1(Y ))k(Y ,Y ′)(ρ0(Y ′)− ρ1(Y ′))]
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Discrepancy between L0 and L1

Proposition

If k admits a representation of the form

k(x , x ′) =
∞∑
j=0

αjej(x)ej(x
′)

where αj ≥ 0 and (ej)j≥0 a basis of F0, then

• SK (L1,L0) ≥ 0

• SK (L1,L0) = 0 iff L0 = L1.

Estimation of kernelized Stein discrepancy

Given a sample Y1, . . . ,Yn ∼ L1,

Ŝ(n)
K (Y1, . . . ,Yn) =

1

n(n − 1)

∑∑
1≤i 6=j≤n

K (Yi ,Yj).
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Asymptotic behavior

Theorem
Using asymptotic properties of U-statistics (Serfling (2009))

1 If L1 6= L0, then

√
n
(
Ŝ(n)
K (Y1, . . . ,Yn)− SK (L1,L0)

)
d→ N (0, σ2)

where σ2 = Var [E[K (Y ,Y ′) |Y ]] 6= 0.

2 If L1 = L0, then

nŜ(n)
K (Y1, . . . ,Yn)

d→
∞∑
j=0

λj(Z
2
j − 1)

where Zj
i .i .d .∼ N (0, 1) and {λj} are the eigenvalues of the

operator A where Ag(x) = E [g(X ′)K (X ,X ′) |X = x ].
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Goodness of fit test

kernelized Stein based test statistic
For H0 : L0 = L1 vs H1 : L0 6= L1, RH0 if Ŝ(n)

K (y1, . . . , yn) is
larger than the quantile of the limit distribution under the null.

Drawback
In general, the asymptotic null distribution is intractable.
⇒ We use bootstrap
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Choosing a 2-Stein kernel

Mehler kernel

k(x , y) =
1√

1− ρ2
exp

(
−ρ

2(x2 + y2)− 2ρxy

2(1− ρ2)

)
=
∞∑
n=0

ρn

n!
Hn(x)Hn(y)

for ρ ∈ (−1, 1).

Radial basis function kernel

k(x , y) = exp
(
−(x − y)2/2

)
=
∞∑
j=0

x j√
j!
e−x

2/2 y j√
j!
e−y

2/2
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Choosing a kernel

Kernel associated to T 0

If (ej)j≥0 is an ONB of F0, the kernel could be

k(x , x ′) =
∞∑
j=0

αjej(x)ej(x
′)

Examples

• If L0 is Gaussian: Hermite polynomials

• If L0 is Beta: Jacobi polynomials

• If L0 is Gamma: Laguerre polynomials
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Discrete context

Notations

• Probability mass function p

• Support of p : S = {0, . . . , n} for some n ∈ IN ∪ {∞}
• Finite difference operators:

∆`f (x) =
f (x + `)− f (x)

`

• L1(p) denotes the collection of g : Z→ IR such that
E[|g(X )|] =

∑n
x=0 |g(x)|p(x) <∞.
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Discrete operator

Stein operator

(Ley, Reinert and Swan 2017)

• Canonical discrete `−Stein operator:

T `p f (x) =
∆`(f (x)p(x))

p(x)

NB: convention: T `p f (x) = 0 if x 6∈ S.

• Canonical discrete `−Stein class: F `(p) is the collection of
f : Z→ IR st f ∈ L1(p) and T `p f ∈ L1(p) has mean 0.

Particular cases

• Forward Stein operator: T +
p f (x) if ` = 1

• Backward Stein operator: T −p f (x) if ` = −1
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Properties of canonical operators

∆` respects the following product formula:

∆`
(
f (x)g(x)

)
=
(
∆`f (x)

)
g(x + `) + f (x)

(
∆`g(x)

)
Then T `p respects the following relations:

T `p
(
f (x)g(x)

)
=

1

`

(
f (x + `)g(x + `)

p(x + `)

p(x)
− f (x)g(x)

)
=
(
T `p f (x)

)
g(x + `) + f (x)

(
∆`g(x)

)
By definition of Stein operator, we deduce the “Stein identities”:

• E
[
f (X )g(X )

]
= E

[
f (X + `)g(X + `)p(X+`)

p(X )

]
• E

[(
T `f (X )

)
g(X + `)

]
= −E

[
f (X )

(
∆`g(X )

)]
18



Properties of canonical operators

∆` respects the following product formula:

∆`
(
f (x)g(x)

)
=
(
∆`f (x)

)
g(x + `) + f (x)

(
∆`g(x)

)
Then T `p respects the following relations:

T `p
(
f (x)g(x)

)
=

1

`

(
f (x + `)g(x + `)

p(x + `)

p(x)
− f (x)g(x)

)
=
(
T `p f (x)

)
g(x + `) + f (x)

(
∆`g(x)

)
By definition of Stein operator, we deduce the “Stein identities”:

• E
[
f (X )g(X )

]
= E

[
f (X + `)g(X + `)p(X+`)

p(X )

]
• E

[(
T `f (X )

)
g(X + `)

]
= −E

[
f (X )

(
∆`g(X )

)]
18



A class of discrete distributions

Class of discrete distributions
Focus on distributions p which satisfy a recurrence relation

p(x + `) =
a(x)

b(x)
p(x)

or, equivalently

∆`p(x) =
1

`

(
a(x)− b(x)

b(x)

)
p(x)

with a, b : Z→ IR two “well-behaved” functions.

Stein operators

T `p
(
f (x)g(x)

)
=

1

`

(
f (x + `)g(x + `)

p(x + `)

p(x)
− f (x)g(x)

)

 Natural choice for f : f (x + `) = b(x)
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Examples

Binomial (n, p)

• p(x) =
(n
x

)
px(1− p)n−x for x ∈ {0, . . . , n}

• p(x + 1)

p(x)
=

p(n − x)

(x + 1)(1− p)

• A+
1 f (x) := p(n − x)f (x + 1)− x(1− p)f (x)

• A+
2 f (x) := p(n − x)∆+f (x) + (x − np)f (x)
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Examples
Binomial(n, p) Poisson(λ)

p(x) =
(
n
x

)
px (1− p)n−x p(x) = e−λλx (x!)−1

x ∈ {0, . . . , n} x ∈ IN
a(x) = p(n − x) a(x) = λ
b(x) = (x + 1)(1− p) b(x) = x + 1
r(x) = x − np r(x) = x − λ

Beta binomial(α, β, n) Hypergeometric(n,N, R)

p(x) =
(
n
x

)
B(α + x, n + β − x)(B(α, β))−1 p(x) =

(
R
x

)(
N−R
n−x

) ((
N
n

))−1

x ∈ {0, . . . , n} x ∈ {0, . . . , n}
a(x) = (n − x)(α + x) a(x) = 1

N
(n − x)(R − x)

b(x) = (x + 1)(n + β − (x + 1)) b(x) = 1
N

(x + 1)(N − R − (n − (x + 1))

r(x) = (α + β)x − nα r(x) = x − n R
N

Panjer(α, β, p0) Ord family (1968)

p(x) =
(
α + β

x

)
p(x − 1); p0 = p(0) ∆p(x − 1) =

(a−x)p(x−1)
b0+b1x+b2x(x−1)

x ∈ IN x ∈ IN

a(x) = α(x + 1) + β a(x) = c0 + c1x + c2x
2

b(x) = x + 1 b(x) = d0 + d1x + d2x
2

r(x) = x(1− α) + β − α r(x) = r0 + r1x

Fulman-Goldstein(q,m, n) (finite case) Fulman-Goldstein(q,m) (limit case)

p(x) = q−x(m+x)
∏m+n

i=1
(1−q−i )

∏∞
i=x+1(1−q−i )∏n−x

i=1
(1−q−i )

∏m+x
i=1

(1−q−i )
p(x) = q−x(m+x) ∏∞

i=x+1(1− q−i )
(∏m+x

i=1 (1− q−i )
)−1

x ∈ {0, . . . , n} x ∈ IN

a(x) = q(1− q−n+x−1) a(x) = q

b(x) = (qx+1 − 1)(qm+x+1 − 1) b(x) = (qx+1 − 1)(qm+x+1 − 1)

r(x) = (qx − 1)(qm+x − 1)− q(1− q−n+x−1) r(x) = (qx − 1)(qm+x − 1)− q
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Fisher information and Stein kernel

If L0 is discrete and X ∼ L0, for all f ∈ F0, we have

E[T 0f (X )g(X )] = −E[f (X )Dg(X )]

for all g for which these expectations exist. For Y ∼ q,

p-score and Fisher information

• p-score for Y : ρ(Y ) st E[ρ(Y )g(Y )] = E[b(Y − 1)∆−g(Y )]

• a Fisher information: E[(T 0f (Y ))2] = E[(ρ(Y ))2] = Ib(q)

p-kernel

• p-kernel for Y : τ(Y ) st E[r(Y )g(Y )] = E[τ(Y )∆−g(Y )]

• a Stein information: E
[
(τ(Y ))2

]
22



p-score and p-kernel: example

Binomial(n, p)

• Binomial score for distributions on IN : ρ(Y ) st

E[ρ(Y )g(Y )] = E[(1− p)Y∆−g(Y )]

• Binomial kernel for distributions on IN : τ(Y ) st

E[τ(Y )∆−g(Y )] = E[(Y − np)g(Y )]

If X ∼ Bin(n, p), ρ(X ) = X − np and τ(X ) = (1− p)X .
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Goodness-of-fit tests

Goodness-of-fit tests for discrete distributions

• Pearson Chi-squared test

• Larger family: power-divergence statistics

2nIλ :=
2

λ(λ+ 1)

k∑
i=1

Oi

[(
Oi

Ei

)λ
− 1

]

• Even larger family: φ-divergence defined by Csiszar (1967):

Dφ =
k∑

i=1

Eiφ(Oi/Ei )

25
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Examples of GOF statistics

Particular power-divergence statistics

• λ = 1: Pearson chi-square

• λ = 0: log-likelihood ratio G 2

• λ = −1/2: Freeman-Tukey or Hellinger distance statistics H2

• λ = −1: modified log-likelihood ratio statistics GM

• λ = −2: Neyman’s modified chi-square statistic

• λ = 2/3: Cressie and Read statistic

Particular φ-divergence statistics

The choice of

φ(x) =
1

λ(λ+ 1)
(xλ+1 − x)

leads to the power divergence statistic.
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Goodness-of-fit tests

Comparison of GOF tests

1 Power divergence tests:

• Pearson (λ = 1)
• Cressie-Read (λ = 2/3)
• loglikelihood ratio (λ = 0)
• Freeman Tukey (λ = −1/2)
• modified loglikelihood ratio (λ = −1)
• Neyman modified chi-squared (λ = −2)

2 Kernelized discrepancy tests:
• Using a RBF kernel
• Using a kernel defined by Afendras et al’s polynomials
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Afendras polynomials

Afendras et al (2011) polynomials

Discrete orthogonal polynomials Pk(x) which satisfy the identify

E[Pk(X )g(X )] = E[τk(X )g (k)(X )]

where τ is the Stein kernel of X .

Adhoc discrete 2-Stein kernel
Considering N + 1 polynomials (N = 0, . . . , n),

kN(x , x ′) :=
N∑
j=0

αjPj(x)Pj(x
′)

where α−1
j = Ep[P2

j (X )].
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Test for binomiality

Target distribution

Binomial (n, p)

Alternative distribution

1 Binomial (n2, p2)

2 Beta Binomial (α, β, n) with p = α
α+β

3 Hypergeometric (n,N,R) with p = R/N

4 Poisson binomial, i.e., sum of indep. Bern(pi )

5 A sum of indicators with some totally correlated, i.e.,
Bin(n − j , p)⊕ jBern(p) for j = 2, . . . , n − 2.
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Some results

Beta Binomial (α, β, n) vs Bin(10,0.1)
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Some results

Hypergeometric (n,N , 2) vs Bin(10,0.1)
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Some results

Hypergeometric (n,N , 2) vs Bin(10,0.1)

31



Preliminary conclusions

When the samples are drawn from another family of distributions
than the target one,

• the discrepancy tests have similar/better power than power
divergence tests;

• a kernel associated to the target distribution is more adequate
than an arbitrary kernel;

• the power increases with the number of polynomials used in
the kernel.

When the samples are drawn from the same family of distributions,
tests based on the first polynomial seems to have the best power.
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Perspectives

• Optimization of the choice of kernel for each distribution?

• Null and non-null distribution?

• Extension to the multivariate case?
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