structural dynamics; first passage time; stochastic Mathieu equation
Abstract :
[en] The first passage time refers to the time required for a dynamical system to reach a target energy level for the first time, departing from a known initial state. Analytical studies of single-degree-of-freedom systems governed by the linear Mathieu equation and subjected to broadband forced and parametric excitations have revealed the existence of different regimes for the first passage time. This Master thesis aims at the experimental validation of the existence of these regimes for a real structure consisting in a strip pre-stressed by a mass. The complete process, from the structure design to the experimental validation, is conducted in this work.
A finite element model of the structure is built in Matlab and updated with various state-of-the-art techniques from the field of experimental modal analysis. A model reduction of the full multi-degree-of-freedom system is introduced to match the conditions of the analytical results. It is shown that the dynamics of the structure can be approached by a single-degree-of-freedom reduced model only when both the forced and parametric excitations are narrow-band processes. The influence of narrow-band excitations on the first passage time is therefore studied numerically. The results of this numerical preparatory study are used to define the conditions of the experimental tests. First passage time maps are reproduced experimentally in the framework of the linear single-degree-of-freedom Mathieu equation.
This work provides the first physical evidence that the first passage time of real multi-degree-of-freedom systems can be characterized with the physical properties of the structure. It also addresses for the first time the influence of narrow-band excitations. Therefore, it opens the way to broadening the scope of the first passage time theory beyond the context of one-degree-of-freedom linear systems subjected to broadband excitations considered so far.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others Mechanical engineering
Author, co-author :
Delhez, Elise ; Université de Liège - ULiège > Master ingé. civ. aérospat., à fin.
Language :
English
Title :
Experimental and numerical study of first passage time
Alternative titles :
[fr] Étude expérimentale et numérique du temps de premier passage
Defense date :
June 2018
Number of pages :
ix, 90 + 6
Institution :
ULiège - Université de Liège
Degree :
Master in Aerospace Engineering
Promotor :
Golinval, Jean-Claude ; Université de Liège - ULiège > Département d'aérospatiale et mécanique
Denoël, Vincent ; Université de Liège - ULiège > Urban and Environmental Engineering
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.