Abstract :
[en] Production of energy from nuclear power plants generates high-level radioactive nuclear waste, harmful during dozens of thousand years. Deep geological disposal of nuclear waste represents the most reliable solutions for its safe isolation. Confinement of radioactive wastes relies on the multi-barrier concept in which isolation is provided by a series of engineered (canister, backfill) and natural (host rock) barriers. Few underground research laboratories have been built all over the world to test and validate storage solutions.
The underground drilling process of disposal drifts may generate cracks, fractures/strain localisation in shear bands within the rock surrounding the gallery especially in argillaceous rocks. These degradations affect the hydro-mechanical properties of the material, such as permeability, e.g. creating a preferential flow path for radionuclide migration. Hydraulic conductivity increase within this zone must remain limited to preserve the natural barrier.
In addition galleries are currently reinforced by different types of concrete supports such as shotcrete and/or prefab elements. Their purpose is twofold: avoiding partial collapse of the tunnel during drilling operations and limiting convergence of the surrounding rock. Properties of both concrete and rock mass are time dependent, due to shotcrete hydration and hydromechanical couplings within the host rock.
By the use of a hydro-mechanical coupled Finite Element Code with a Second Gradient regularization, this paper aims at investigating and predicting support and rock interactions (convergence, stress field). The effect of shotcrete hydration evolution, spraying time and use of compressible wedges is studied in order to determine their relative influence.
Scopus citations®
without self-citations
3