Land use change; urban expansion; cellular automata; supported vector machines; logistic regression; Wallonia
Abstract :
[en] Land use change models enable the exploration of the drivers and consequences of land use dynamics. A broad array of modeling approaches are available and each type has certain advantages and disadvantages depending on the objective of the research. This paper presents an approach combining cellular automata (CA) model and supported vector machines (SVMs) for modeling urban land use change in Wallonia (Belgium) between 2000 and 2010. The main objective of this study is to compare the accuracy of allocating new land use transitions based on CA-SVMs approach with conventional coupled logistic regression method (logit) and CA (CA-logit). Both approaches are used to calibrate the CA transition rules. Various geophysical and proximity factors are considered as urban expansion driving forces. Relative operating characteristic and a fuzzy map comparison are employed to evaluate the performance of the model. The evaluation processes highlight that the allocation ability of CA-SVMs slightly outperforms CA-logit approach. The paper also reveals that the major urban expansion determinant is urban road infrastructure.
Research Center/Unit :
LEMA
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Mustafa, Ahmed Mohamed El Saeid ; Université de Liège - ULiège > Département ArGEnCo > LEMA (Local environment management and analysis)
Rienow, Andreas; Ruhr-University Bochum
Saadi, Ismaïl ; Université de Liège - ULiège > Département ArGEnCo > LEMA (Local environment management and analysis)
Cools, Mario ; Université de Liège - ULiège > Département ArGEnCo > Transports et mobilité
Teller, Jacques ; Université de Liège - ULiège > Département ArGEnCo > Urbanisme et aménagement du territoire
Language :
English
Title :
Comparing support vector machines with logistic regression for calibrating cellular automata land use change models
Aburas, M.M., Ho, Y.M., Ramli, M.F., & Ash’aari, Z.H., (2016). The simulation and prediction of spatio-temporal urban growth trends using cellular automata models: A review. International Journal Applications Earth Obs Geoinformation, 52, 380–389.
Achmad, A., Hasyim, S., Dahlan, B., & Aulia, D.N., (2015). Modeling of urban growth in tsunami-prone city using logistic regression: Analysis of Banda Aceh, Indonesia. Applications Geographic, 62, 237–246.
Aldrich, J.H., & Nelson, F.D., (1984). Quantitative Applications in the Social Sciences: Linear probability, logit, and probit models. Thousand Oaks, CA: SAGE Publications Ltd doi: 10.4135/9781412984744.
Belgian Federal Government. 2013. Statistics Belgium [WWW Document]. Stat. Belg. URL. Retrieved from http://statbel.fgov.be/fr/statistiques/chiffres/(Accessed April 29.14).
Ben-Hur, A., & Weston, J., (2010). A user’s guide to support vector machines, in: Data mining techniques for the life sciences, methods in molecular biology. Humana Pressure, 223–239. doi:10.1007/978-1-60327-241-4_13
Berberoğlu, S., Akın, A., & Clarke, K.C., (2016). Cellular automata modeling approaches to forecast urban growth for adana, Turkey: A comparative approach. Landscape Urban Planning, 153, 11–27.
Boser, B.E., Guyon, I.M., & Vapnik, V.N., 1992. A training algorithm for optimal margin classifiers. Proceedings of the Fifth Annual Workshop on Computational Learning Theory, COLT ’92, ACM, New York, NY, USA, pp. 144–152. doi:10.1145/130385.130401
Burges, C.J., (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2, 121–167.
Chang, -C.-C., & Lin, C.-J., (2001). LIBSVM: A library for support vector machines. National Taiwan University, Taipei, Taiwan.
Chen, Y., Li, X., Liu, X., & Ai, B., (2014). Modeling urban land-use dynamics in a fast developing city using the modified logistic cellular automaton with a patch-based simulation strategy. International Journal Geographic Information Sciences, 28, 234–255.
Cheng, J., & Masser, I., (2003). Urban growth pattern modeling: A case study of Wuhan city, PR China. Landscape Urban Planning, 62, 199–217.
Clark, W.A.V., & Hosking, P.L., (1986). Statistical methods for geographers (1 ed.). New York: Wiley.
Clarke, K.C., & Gaydos, L.J., (1998). Loose-coupling a cellular automaton model and GIS: Long-term urban growth prediction for San Francisco and Washington/Baltimore. International Journal Geographic Information Sciences, 12, 699–714.
EEA. (2011). Landscape fragmentation in Europe (Publication). European Environment Agency, Copenhagen.
Feng, Y., Liu, Y., Tong, X., Liu, M., & Deng, S., (2011). Modeling dynamic urban growth using cellular automata and particle swarm optimization rules. Landscape Urban Planning, 102, 188–196.
García, A.M., Santé, I., Crecente, R., & Miranda, D., (2011). An analysis of the effect of the stochastic component of urban cellular automata models. Computation Environment Urban Systems, 35, 289–296.
Hagen, A., (2003). Fuzzy set approach to assessing similarity of categorical maps. International Journal Geographic Information Sciences, 17, 235–249.
Hallowell, G.D., & Baran, P.K., (2013). Suburban change: A time series approach to measuring form and spatial configuration. Journal Space Syntax, 4, 74–91.
Hsu, C., Chang, C., & Lin, C., (2010). A practical guide to support vector classification. National Taiwan University, Taipei, Taiwan
Hu, Z., & Lo, C.P., (2007). Modeling urban growth in Atlanta using logistic regression. Computation Environment Urban Systems, 31, 667–688.
Huang, B., Xie, C., & Tay, R., (2010). Support vector machines for urban growth modeling. GeoInformatica, 14, 83–99.
Hughes, G., (1968). On the mean accuracy of statistical pattern recognizers. IEEE Transactions Information Theory, 14, 55–63.
Iannone, G., & Troisi, A., (2013). Ca-pri, a cellular automata phenomenological research investigation: Simulation results. International Journal Modern Physical C, 24, 1350027.
Iannone, G., Troisi, A., Guarnaccia, C., D’agostino, P.P., & Quartieri, J., (2011). An urban growth model based on a cellular automata phenomenological framework. International Journal Modern Physical C, 22, 543–561.
Jantz, C.A., Goetz, S.J., & Shelley, M.K., (2003). Using the Sleuth urban growth model to simulate the impacts of future policy scenarios on urban land use in the Baltimore-Washington metropolitan area. Environment Plan B Plan Design, 31, 251–271.
Jokar Arsanjani, J., Helbich, M., Kainz, W., & Darvishi Boloorani, A., (2013). Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal Applications Earth Obs Geoinformation, 21, 265–275.
Kryvobokov, M., Mercier, A., Bonnafous, A., & Bouf, D., (2015). Urban simulation with alternative road pricing scenarios. Case Studies Transp Policy, 3, 196–205.
Martens, D., Baesens, B., Van, G., & Vanthienen, J., (2007). Comprehensible credit scoring models using rule extraction from support vector machines. European Journal Operational Researcher, 183, 1466–1476.
Montgomery, D.C., & Runger, G.C., (2003). Applied statistics and probability for engineers (4th ed.). New York: John Wiley & Sons.
Munshi, T., Zuidgeest, M., Brussel, M., & van Maarseveen, M., (2014). Logistic regression and cellular automata-based modelling of retail, commercial and residential development in the city of Ahmedabad, India. Cities, 39, 68–86.
Mustafa, A., Cools, M., Saadi, I., & Teller, J., (2017). Coupling agent-based, cellular automata and logistic regression into a hybrid urban expansion model (HUEM). Land Use Policy, 69C, 529–540. https://doi.org/10.1016/j.landusepol.2017.10.009
Mustafa, A., Cools, M., Saadi, I., & Teller, J., (2017). Coupling agent-based, cellular automata and logistic regression into a hybrid urban expansion model (HUEM). Land Use Policy, 69, 529–540.
Mustafa, A., Heppenstall, A., Omrani, H., Saadi, I., Cools, M., & Teller, J., (2018a). Modelling built-up expansion and densification with multinomial logistic regression, cellular automata and genetic algorithm. Computation Environment Urban Systems, 67, 147–156.
Mustafa, A., Rompaey, A.V., Cools, M., Saadi, I., & Teller, J., (2018b). Addressing the determinants of built-up expansion and densification processes at the regional scale. Urban Studies (Edinburgh, Scotland), 1–20. doi:10.1177/0042098017749176
Mustafa, A., Saadi, I., Cools, M., & Teller, J., 2014. Measuring the effect of stochastic perturbation component in cellular automata urban growth model. Procedia Environ. Sci., 12th International Conference on Design and Decision Support Systems in Architecture and Urban Planning, DDSS 2014 22, 156–168.
Mustafa, A., Saadi, I., Cools, M., & Teller, J., (2018c). Understanding urban development types and drivers in Wallonia. A multi-density approach. International Journal of Business Intelligence and Data Mining, 13, 309–330.
Nguyen, M.H., & De La Torre, F., (2010). Optimal feature selection for support vector machines. Pattern Recognition, 43, 584–591.
Pace, R.K., & LeSage, J.P., (2002). Semiparametric maximum likelihood estimates of spatial dependence. Geographic Analysis, 34, 76–90.
Platt, J., (1999). Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advancement Large Margin Classifier, 10, 61–74.
Poelmans, L., & Van Rompaey, A., (2009). Detecting and modelling spatial patterns of urban sprawl in highly fragmented areas: A case study in the Flanders–Brussels region. Landscape Urban Planning, 93, 10–19.
Poelmans, L., & Van Rompaey, A., (2010). Complexity and performance of urban expansion models. Computation Environment Urban Systems, 34, 17–27.
Power, C., Simms, A., & White, R., (2001). Hierarchical fuzzy pattern matching for the regional comparison of land use maps. International Journal Geographic Information Sciences, 15, 77–100.
Puertas, O.L., Henríquez, C., & Meza, F.J., (2014). Assessing spatial dynamics of urban growth using an integrated land use model. Application in Santiago Metropolitan Area, 2010–2045. Land Use Policy, 38, 415–425.
Raczko, E., & Zagajewski, B., (2017). Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images. European Journal Remote Sensing, 50, 144–154.
Rienow, A., & Goetzke, R., (2015). Supporting SLEUTH–Enhancing a cellular automaton with support vector machines for urban growth modeling. Computation Environment Urban Systems, 49, 66–81.
Santé, I., García, A.M., Miranda, D., & Crecente, R., (2010). Cellular automata models for the simulation of real-world urban processes: A review and analysis. Landscape Urban Planning, 96, 108–122.
Schölkopf, B., Burges, C., & Vapnik, V., 1996. Incorporating invariances in support vector learning machines, in: Artificial Neural Networks — ICANN 96. Presented at the International Conference on Artificial Neural Networks, Springer, Berlin, Heidelberg, pp. 47–52. doi:10.1007/3-540-61510-5_12
Ševčíková, H., Raftery, A.E., & Waddell, P.A., (2007). Assessing uncertainty in urban simulations using Bayesian melding. Transp Researcher Particle B Methodol, 41, 652–669.
SPW. (2013). Schéma de Développement de l’Espace Régional-Une vision pour le territoire wallon (Regional space development plan–A vision for Wallonia).Service Public de Wallonie. Namur, Belgium.
Tannier, C., & Thomas, I., (2013). Defining and characterizing urban boundaries: A fractal analysis of theoretical cities and Belgian cities. Computation Environment Urban Systems, 41, 234–248.
Thomas, I., Frankhauser, P., & Biernacki, C., (2008). The morphology of built-up landscapes in Wallonia (Belgium): A classification using fractal indices. Landscape Urban Planning, 84, 99–115.
Troisi, A., (2015). Can CA describe collective effects of polluting agents? International Journal Modern Physical C, 26, 1550114.
Van Gestel, T., Suykens, J.A., Baestaens, D.-E., Lambrechts, A., Lanckriet, G., Vandaele, B., … Vandewalle, J., (2001). Financial time series prediction using least squares support vector machines within the evidence framework. IEEE Transactions Neural Network, 12, 809–821.
Vapnik, V.N., (1995). The nature of statistical learning theory. New York, NY, USA: Springer-Verlag New York, Inc.
Verburg, P.H., van Eck, J.R.R., de Nijs, T.C.M., Dijst, M.J., & Schot, P., (2004). Determinants of land-use change patterns in the Netherlands. Environment Plan B Plan Design, 31, 125–150.
Vermeiren, K., Van Rompaey, A., Loopmans, M., Serwajja, E., & Mukwaya, P., (2012). Urban growth of Kampala, Uganda: Pattern analysis and scenario development. Landscape Urban Planning, 106, 199–206.
Verplancke, T., Van Looy, S., Benoit, D., Vansteelandt, S., Depuydt, P., De Turck, F., & Decruyenaere, J., (2008). Support vector machine versus logistic regression modeling for prediction of hospital mortality in critically ill patients with haematological malignancies. BMC Medica Informatics Decisions Mak, 8, 56.
Vogel, R., 2013. Entwicklung eines automatisierten Wolkendetektions- und Wolkenklassifizierungsverfahrens mit Hilfe von Support Vector Machines angewendet auf METEOSAT-SEVIRI-Daten für den Raum Deutschland (Text.PhDThesis).
Waddell, P., (2002). UrbanSim: Modeling urban development for land use, transportation, and environmental planning. Journal American Planning Association, 68, 297–314.
Wang, H., He, S., Liu, X., Dai, L., Pan, P., Hong, S., & Zhang, W., (2013). Simulating urban expansion using a cloud-based cellular automata model: A case study of Jiangxia, Wuhan, China. Landscape Urban Planning, 110, 99–112.
Wang, J., & Maduako, I.N., (2018). Spatio-temporal urban growth dynamics of Lagos metropolitan region of Nigeria based on hybrid methods for LULC modeling and prediction. European Journal Remote Sensing, 51, 251–265.
Waske, B., Linden, S.V.D., Benediktsson, J.A., Rabe, A., & Hostert, P., (2010). Sensitivity of support vector machines to random feature selection in classification of hyperspectral data. IEEE Transactions Geoscience Remote Sensing, 48, 2880–2889.
White, R., & Engelen, G., (1993). Cellular automata and fractal urban form: A cellular modelling approach to the evolution of urban land-use patterns. Environment Plan A, 25, 1175–1199.
Wu, F., (2002). Calibration of stochastic cellular automata: The application to rural-urban land conversions. International Journal Geographic Information Sciences, 16, 795–818.
Xie, C., (2006). Support vector machines for land use change modeling. University of Calgary, Calgary, Canada.
Yang, Q., Li, X., & Shi, X., (2008). Cellular automata for simulating land use changes based on support vector machines. Computational Geoscience, 34, 592–602.
Zhang, H., Zeng, Y., Bian, L., & Yu, X., (2010). Modelling urban expansion using a multi agent-based model in the city of Changsha. Journal Geographic Sciences, 20, 540–556.