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Comparing support vector machines with logistic regression for calibrating
cellular automata land use change models
Ahmed Mustafa a,b, Andreas Rienow b, Ismaïl Saadi a, Mario Cools a and Jacques Teller a

aLEMA, Urban and Environmental Engineering Dept., Liège University, Liège, Belgium; bGeomatics Research Group, Ruhr-University
Bochum, Bochum, Germany

ABSTRACT
Land use change models enable the exploration of the drivers and consequences of land use
dynamics. A broad array of modeling approaches are available and each type has certain
advantages and disadvantages depending on the objective of the research. This paper
presents an approach combining cellular automata (CA) model and supported vector
machines (SVMs) for modeling urban land use change in Wallonia (Belgium) between 2000
and 2010. The main objective of this study is to compare the accuracy of allocating new land
use transitions based on CA-SVMs approach with conventional coupled logistic regression
method (logit) and CA (CA-logit). Both approaches are used to calibrate the CA transition
rules. Various geophysical and proximity factors are considered as urban expansion driving
forces. Relative operating characteristic and a fuzzy map comparison are employed to
evaluate the performance of the model. The evaluation processes highlight that the alloca-
tion ability of CA-SVMs slightly outperforms CA-logit approach. The paper also reveals that
the major urban expansion determinant is urban road infrastructure.
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Introduction

Several land use change models are developed to
explore the drivers of land use/land cover change
and to simulate future land use patterns (e.g.
Hallowell & Baran, 2013; Kryvobokov, Mercier,
Bonnafous, & Bouf, 2015; Puertas, Henríquez, &
Meza, 2014; Wang & Maduako, 2018). The existing
modeling approaches generally adopt cellular auto-
mata (CA), Agent-based (AB), urban-economic dis-
crete-choice and/or statistical models. CA modeling
framework (e.g. Batty, Xie, & Sun, 1999; Troisi, 2015)
is particularly useful in encompassing spatial auto-
correlation effects by considering local neighborhood
dynamics. AB models (e.g. Mustafa et al., 2017;
Zhang, Zeng, Bian, & Yu, 2010) examine agents as
goal-oriented entities capable of responding to their
environment and taking independent actions, where
these agents may represent individuals, institutions
etc. In AB models, solutions have been designed to
explore the emergent properties of systems with rela-
tively simple behavioral rules representing individual
agents. The urban-economic discrete choice models
emerged from an integration of urban economic ana-
lysis with agents choices in the urban environment.
UrbanSim is an example application of this approach
(e.g. Kryvobokov et al., 2015; Waddell, 2002). This
application works with agents and integrates works
with agents and integrates discrete choice approach

and statistical methods to estimate model parameters
(Ševčíková, Raftery, & Waddell, 2007). Another
approach relies on statistical methods (e. g. Mustafa
et al., 2018b; Hu & Lo, 2007; Vermeiren, Van
Rompaey, Loopmans, Serwajja, & Mukwaya, 2012)
that help identify drivers behind land use change
dynamics.

Among the abovementioned approaches, CA has
received considerable attention due to its simplicity,
transparency and its ability to represent the evolution
of land use, particularly urban expansion (Clarke &
Gaydos, 1998; Troisi, 2015). Aburas et al. (2016) and
Santé, García, Miranda, and Crecente (2010) have
reviewed CA models and have concluded that CA
approach is one of the most appropriate techniques
for simulating land use change. CA models focus on
the simulation of spatial patterns by explicitly consider-
ing the immediate neighbors of each landscape unit,
that is, e.g. cell, rather than on the interpretation of
driving factors of the land use change. Due to this
limitation of CA models, huge research effort has been
made in order to improve CA modeling structure by
incorporating a variety of driving forces into the model
(e.g. Jokar Arsanjani, Helbich, Kainz, & Darvishi
Boloorani, 2013; Munshi, Zuidgeest, Brussel, & Van
Maarseveen, 2014). The key challenge in such approach
is the calibration of the transition rules. Recently, logis-
tic regression method (logit) has become one of the
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most popular techniques for calibrating CAmodels (e.g.
Chen, Li, Liu, & Ai, 2014; Munshi et al., 2014; Poelmans
& Van Rompaey, 2010; Wu, 2002). Logit requires less
demand for computational resources and can include
several driving forces. In addition, it measures the rela-
tive contribution of each driving forces which is of great
value for policymakers. Despite these strengths, logit
assumes that the occurrence probability is linearly and
additively related to the independent variables on a
logistic scale (Cheng & Masser, 2003). If this assump-
tion cannot be satisfied, the performance of the model
may decline.

Proposed by Vapnik et al. in the 1990s (Boser,
Guyon, & Vapnik, 1992; Schölkopf, Burges, &
Vapnik, 1996), the support vector machines (SVMs)
is a supervised algorithm that can model nonlinearity
relationships (Martens, Baesens, Van, & Vanthienen,
2007). A number of researchers argue that SVMs are
an effective method for defining transition rules for
CA models, owing to their ability to model nonlinear
relationships with good generalization performance
(Rienow & Goetzke, 2015; Yang, Li, & Shi, 2008).
The basic idea of SVMs algorithm is quite different
from that of logit method, while logit employs a max-
imum likelihood algorithm, SVMs, in contrast, tries to
project input vectors on a binary (i.e. two classes)
hyperplane that is linearly separable. If the linear
separation is not possible, SVMs algorithm is still
able to find a separation boundary for classification
by a curved (nonlinear) separation. In the SVMs, non-
linear solutions can be found by increasing the dimen-
sionality of the input variable space (Verplancke et al.,
2008). Being able to recognize patterns reliably, the
SVM algorithms are applied for regression challenges
like the prediction of hospital mortality (e.g.
Verplancke et al., 2008) or financial time series (e.g.
Van Gestel et al., 2001). These techniques are also
heavily used to solve classification problems, for exam-
ple, in the context of satellite imagery (Raczko &
Zagajewski, 2017; Vogel, 2013; Waske, Linden,
Benediktsson, Rabe, & Hostert, 2010).

There are limited research efforts reported on
performance differences between SVMs and logit
within land use change domain. Huang, Xie, and
Tay (2010) compared the performance of SVMs to
logit without integration with CA. Rienow and
Goetzke (2015) and Yang et al. (2008) compared
CA-SVMs with CA-logit. However, both studies
exhibit a stochastic disturbance term. Since the
stochastic term is integrated into the model, the
results may not demonstrate a fair comparison of
the performance of both approaches. However,
these studies concluded that SVMs outperformed
logit. This paper contributes to the research efforts
that examine the performance of CA-SVMs model
and compare it with CA-logit model. In compar-
ison with the previous work, a major differentiation

of our work is comparing the performance of CA-
logit model with CA-SVMs with and without intro-
ducing a stochastic term to get a more reliable
comparison. This study separately introduces
SVMs and logit as methods for defining the transi-
tion rules for CA model. Both approaches are
developed and tested for Wallonia, southern
Belgium as a case study. We simulate the spatio-
temporal process of urban expansion from 2000 to
2010, using time steps of 1 year. Our model is a
predictive model, which simulates future land use
change based on the calibration results.
Explorations of future land use change are impor-
tant to define potential change areas. However, that
is outside the scope of the present paper. The
urban class in our model configuration consists of
land that is covered by buildings and does not
consider all other artificial uses such as transport
infrastructure. The simulation outcomes are evalu-
ated with the relative operating characteristic
(ROC) (Aldrich & Nelson, 1984) and the fuzziness
comparison index.

Materials and methods

Study area

Wallonia, Figure 1, encompasses the southern part
of Belgium with a total area of 16,844 km2. It
comprises five provinces: Hainaut, Liège,
Luxembourg, Namur and Walloon Brabant. The
main urban areas are Charleroi, Liège, Mons and
Namur. These urban areas are all characterized by
a historical city-center, around which the urban
development expanded (Mustafa, Saadi, Cools, &
Teller, 2018c). The total population of Wallonia in
2010 was 3,498,384 inhabitants, corresponding to
one-third of the Belgium population (Belgian
Federal Government, 2013). Urban development
in the Northern part of Wallonia is strongly influ-
enced by the presence of Brussels especially in the
province of Walloon Brabant. In the southernmost
part of Wallonia, the presence of the city of
Luxembourg affects urban development (Thomas,
Frankhauser, & Biernacki, 2008).

Wallonia typifies a growing debate regarding the
trade-offs between socioeconomic development and
their impacts on the landscape. It is characterized by
a strong urban sprawl and resulting landscape frag-
mentation (EEA, 2011). This, in turn, increases envir-
onmental impacts. In order to tackle those impacts,
the authorities in Wallonia set a planning policy to
reduce the conversion rate of non-urban to urban
lands from 20 km2/year to 12 km2/year by 2020 and
to 9 km2/year by 2040 (SPW, 2013). Such policies
require a holistic vision of the urban development
process.
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Data

Belgian cadastral data (CAD) are used to prepare
land use maps. CAD, made available by the Land
Registry Administration of Belgium, is a vector data
representing buildings as polygons. Each building
comes with different attributes including its construc-
tion date. Using the construction date, two urban
raster-grids were generated for 2000 and 2010. The
vector data is rasterized at a fine cell dimension of
2 m × 2 m. The rasterized cells were then aggregated
to obtain a 100 m × 100 m raster-grid. The aggre-
gated data consider cells as urban, as soon as one
2 m × 2 m cell is built-up within its boundary. As a
result, the amount of urban area might be overesti-
mated. To overcome this problem, all aggregated cells
with a density less than 25 of 2 m × 2 m cells were
considered as non-urban cells. The threshold of 25
(representing a building of 100 m2) corresponds to an
average-sized residential building in Belgium
(Tannier & Thomas, 2013). Aggregated urban lands
are assigned a value of 1, while other land uses are
assigned a value of 0.

Existing literature introduced a wide range of
urbanization driving forces, including geophysical,
proximity, policies and socioeconomic factors.
However, the geophysical and proximity factors are
included in most studies (Berberoğlu, Akın, & Clarke,
2016; Chen et al., 2014; Mustafa, Cools, Saadi, &
Teller, 2017; Mustafa et al., 2018a). Based on the
best available data, we select six factors related to
proximities and geophysical aspects. Elevation and
slope are introduced as geophysical drivers.

Proximity to highways, main roads, secondary roads
and local roads are introduced as accessibility indica-
tors. They act as proxies for socio-economic driving
forces like market access in a “von Thünen” model
(Verburg, Van Eck, De Nijs, Dijst, & Schot, 2004).
The Navteq streets of 2002 are used to calculate
Euclidean distances to the four road classes. Digital
Elevation Model provided by the Belgian National
Geographic Institute is used to calculate slope in
percentage rise for each cell. All maps are created as
raster grids with a resolution of 100 m × 100 m. The
variance inflation factors (VIF) test has been per-
formed to ensure that there is no multicollinearity
between the selected driving forces. The driving
forces show VIF values between 1.06 and 1.33,
which means that there is no potential multicollinear-
ity (Montgomery & Runger, 2003).

The model structure

This paper presents a CA land use change model with
a focus on urban expansion process. Among other
CA models, the model we propose has some overlaps
with a previous scheme proposed in Iannone, Troisi,
Guarnaccia, D’agostino, and Quartieri (2011),
Iannone and Troisi (2013), and Troisi (2015) where
a holistic urban potential-based approach has been
introduced.

The model consists of two principal modules with
distinct functions, namely a non-spatial demand
module and a spatially explicit allocation module.
The non-spatial module calculates the demand of

Figure 1. Study area.
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new urban cells at each time step at the aggregate
level. Within the second module, these demands are
translated into changing the state of a specific num-
ber of non-urban cells into urban ones at different
locations over the study area. In order to draw atten-
tion to the allocation ability of the model, the
demand module assumes that the amount of new
urban cells is equal to that of the actual urban devel-
opment occurring during the simulated period
divided evenly by 10 (the number of years).

The allocation module is the key part of the model.
Figure 2 highlights the module workflow. This module
starts generating two urbanization probability maps
based on logit and SVMs. This is done by associating
2000–2010 urban changes with the driving forces. The
module then measures the potential for urban expan-
sion on a yearly basis by considering the effects of the
neighboring land uses using CA model. Finally, CA is
coupled with logit and SVM approaches in which the
potential for urban expansion was defined as follows
(Feng et al., 2011; Wu, 2002):

Purbntij ¼ PDt
ij � Nt

ij � con :ð Þ (1)

where Purbntij is the urbanization potential of a cell ij
at time t, PDt

ij is the transition probability for a cell ij
based on the driving forces, Nt

ij is the neighborhood
potential for a cell ij based on the immediate

neighborhood interactions and con(.) is the restrictive
cases for urban development. In our case study, con(.)
is 0 if cell ij is occupied by water, defined by the
official zoning plan, or 1 otherwise. The model then
changes the cells with the highest Purbntij scores to
urban cells until meeting the required new urban
cells, i.e. expansion demand. The PDt

ij is calculated
based on two different ways using logit (PDlogit) and
SVMs (PDsvm).

The dependent variable for logit and SVMs is a
binary map showing the spatial pattern of observed
urban expansion between 2000 and 2010. A value of 1
in the map indicates that the non-urban cell has
changed its land use to urban where a value of 0
means that the cell did not change its use. The inde-
pendent variables are the selected urbanization driv-
ing forces. As the independent variables are measured
in different units, we normalized them between 0 and
1. This is especially important for SVMs as the accu-
racy can severely deteriorate if the data are not nor-
malized (Ben-Hur & Weston, 2010; Chang & Lin,
2001).

In order to minimize the potential effects of spatial
autocorrelation on the logit results, both models were
calibrated using a random sample (S) of 4000 cells
with a minimum distance of 500 m between each cell
within the sample, Figure 3. The same sample set is
used on SVMs and logit. All existing urban cells in
2000 are excluded from the samples.

Definition of cell neighborhood

The value of the neighborhood potential, Nt
ij, is cal-

culated as follows (Feng et al., 2011; Wu, 2002):

Nt
ij ¼

P
U

n� n� 1
(2)

where U is the number of urban cells among the
Moore n × n neighborhood. The proper size of
neighborhood is selected based on a sensitivity ana-
lysis of the model performance with different neigh-
boring sizes ranging from 3 × 3 to 9 × 9.

Logistic regression

Logistic regression (logit) is an empirical modeling
technique in which the selection of the indepen-
dent variables is data-driven rather than knowl-
edge-driven. Logit can readily identify the impact
of independent variables and provides a degree of
confidence regarding their contributions (Hu &
Lo, 2007). This type of regression analysis is
usually employed in estimating a model that
defines the relationship between one or more
independent variable(s) to a binary dependent
variable. It considers the urbanization driving
forces to be independent variables. DependentFigure 2. The model’s flowchart.
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variable takes the values of 1 (positive response)
and 0 (negative response) following the logistic
curve. The logistic function can be estimated by
means of the following equation:

PDlogit ¼ P Y ¼ 1jχ1; χ2; . . . ; χn
� �

¼ exp αþ β1χ1 þ β2χ2 þ . . .þ βnχn
� �

1þ exp αþ β1χ1 þ β2χ2 þ . . .þ βnχn
� �

(3)

where PDlogit is the probability of a non-urban cell
being urban, P(Y = 1 |x1, x2, . . ., xn) the probability of
the dependent variable Y being 1 given independent
variables (x1, x2, . . ., xn), which can be either catego-
rical or continuous, α is the intercept representing the
value of Y when the values of the independent vari-
ables are zero and (β1, β2, . . ., βn) are the regression
coefficients. The logit employs the procedure of the
maximum likelihood (Pace & LeSage, 2002) to
encounter the α and β.

Support vector machines

Along with artificial neural networks and genetic
programming, SVM algorithms represent a new gen-
eration of machine learning algorithms. To put it
simply, SVMs are a linear binary classifier that labels
a sample of empirical data by constructing the opti-
mal separating hyperplane. Traditional machine
learning methods try to minimize the empirical train-
ing error so that they tend to overfit (Vapnik &
Vapnik, 1998; Xie, 2006). They are strongly tailored
to the training data, so transferring them to further
data turns out to be difficult. Considering the princi-
ples of structural risk minimization (Vapnik, 1995;
Vapnik & Vapnik, 1998), SVMs aim at minimizing
the upper bound of the expected generalization error
through maximizing the margin between the separat-
ing hyperplane and the data (Figure 4, left). The
concept of margin plays a key role in SVM algorithm
as it indicates the generalization capability of SVMs
(Burges, 1998; Huang et al., 2010). The main

Figure 3. The selected samples (2000 cells of 0 and 2000 cells of 1).

Figure 4. An optimal hyperplane constructed by separating the training data (left). Having a nonlinear classification problem,
the input data is projected onto a higher-dimensional Hilbert space (right) (Vogel, 2013).
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advantage of SVMs is the ability to transform the
model to solve a nonlinear classification problem
without any prior knowledge. The input vectors are
re-projected to a higher-dimensional space in which
they can be classified linearly using the so-called
kernel trick (Eq.8–9) (Figure 4, right).

We need to find a hyperplane which separates the
positive from the negative feature vectors. The separ-
ating hyperplane H can be parameterized linearly by
w and b:

H : hw; xi þ b ¼ 0 (4)

where w, element of Rd, is a normal to H, and b,
element of R, the bias. In case of the linearly separ-
able, SVMs can define two hyperplanes H+ and H_
constructed by the closest positive and negative
examples – the so-called support vectors:

Hþ : hw; xi þ b ¼ 1
H� : hw; xi þ b ¼ �1

(5)

As H+ and H have the same normal and no training
points fall between them, they are parallel. The dis-
tance between the optimal separating hyperplane H+

and H, resp. H- and H, is 1/||W||’ where ||W|| is the
Euclidean norm of w. Thus, the margin between H+

and H- is 2/||W||. The optimal separating hyperplane
is found where the margin between H+ and H- is the
largest and therefore ||W|| has to be minimized. The
outline of the constrained optimization problem is

minw;b
1
2
j wj jj2 þ C

Xn

i¼1

�i subject to yi w; xi þ bð Þ

� 1

� 0 for i ¼ 1; . . . ; n (6)

The constant C is called penalty parameter and ξi is a
slack variable representing the error in the classifica-
tion. The first part of Eq. 6 maximizes the margin
between the two classes whereas the second part
minimizes the classification error. The optimization
problem is solved by formulating it in a dual form
derived by constructing a Lagrange function accord-
ing to the Karush–Kuhn–Tucker optimality condition
(Burges, 1998). If the classification problem is not
separable linearly, the data set has to be transferred
or projected respectively into a higher dimension: the
Hilbert space. It extends the methods of vector alge-
bra from two-/three-dimensional spaces to spaces
depicting any finite or infinite number of dimensions.
By using the function ϕ with d1 < d2 the amount of
possible linear separations is increased as follows:

R
d1 ! R

d2; x ! ϕ xð Þ (7)

SVMs are appropriate for the nonlinearity problems
since the training data xi emerge only in scalar pro-
ducts. The scalar product xi, x is calculated in the
higher dimensional space ϕ(xi), ϕ(x). This transfer is

performed with the use of a kernel function k accord-
ing to Mercer’s theorem (Burges, 1998):

k xi;xð Þ ¼ ϕ xið Þ;ϕ xð Þ (8)

The Gaussian radial basis function kernel is used in
this study (Waske et al., 2010; Xie, 2006):

k xi;xð Þ ¼ e�γ x�xij j2 (9)

where γ defines the width of the Gaussian kernel
function. Instead of predicting the label directly, the
class probability is calculated (Eq. 8) delivering the
basis for the probability maps of urban expansion.
Platt (1999) approximates the probabilities for binary
SVMs using a sigmoid function as follows:

P y ¼ 1jxð Þ ¼ 1

1þ eAþf xð ÞB
(10)

where A and B are parameters estimated by minimiz-
ing the negative log-likelihood function (Platt, 1999).

The SVMs is implemented using the software tool
imageSVM® in the EnMAP Toolbox® developed at
Humboldt University of Berlin. Initially, imageSVM
tool has been developed to solve classification pro-
blems in the context of multi- and hyperspectral
satellite imagery (Waske et al., 2010). The output of
SVMs classification with imageSVM is not only a
classified binary image but also a probability image
based on the principles of Eq. 10.

It is important to determine the best parameter
values for constructing a probability map based on
SVMs algorithm, including appropriate values for the
penalty parameter C (Eq. 6) and the kernel parameter γ
defining the width of the RBF kernel (Eq. 9). We use the
n-fold cross validation procedure (Hsu, Chang, & Lin,
2010) as it is an effective method for balancing the
accuracy results of known training data with unknown
testing data. According to the curse of dimensionality
and the Hughes phenomenon, which describes the
degradation of the classifier performance when increas-
ing the number of features, it is additionally advisable to
select the optimal feature combination (Hughes, 1968).
This selection of relevant features can improve predic-
tion ability, generalization performance, and computa-
tional efficiency of SVMs (Nguyen & De La Torre,
2010). We employ feature selection which provides
additional insights into the impacts of the various driv-
ing forces. A common method of SVMs feature selec-
tion is a forward feature selection (FFS) (Hsu et al.,
2010; Waske et al., 2010), which initially trains each
feature of the input feature set. The best performing
feature is selected and the remaining features are used
for training in combination with the initially selected
one. The procedure is repeated until all features have
been selected. The result is a functional ranking of the
different feature combinations and those features which
weaken SVMs classifier can be eliminated.
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Model evaluation

Various methods of map comparison have been pro-
posed to evaluate the outcomes of land use change
models. Fuzzy map comparison (Bandemer &
Gottwald, 1995) is one of these methods which offers
potential for avoiding the problems of traditional
cross-tabulate method and spatial metrics
(Bandemer & Gottwald, 1995; Power, Simms, &
White, 2001). A key factor in the fuzzy map compar-
ison is that it considers the neighborhood of a cell to
measure similarity of that cell in a value between 0
and 100 (fully similar). A number of studies have
evaluated model performance based on the ROC
(e.g. Achmad et al., 2015; Vermeiren et al., 2012)
and spatial metrics summarizing the whole landscape
(García, Santé, Crecente, & Miranda, 2011; Liu, Li,
Shi, Wu, & Liu, 2008).

In this study, the process of evaluation is based on
the following criteria: (i) the ROC statistic which is
used to evaluate the obtained probability maps of
logit and SVMs and (ii) the fuzzy map comparison
which is employed to evaluate the allocation perfor-
mance of CA-logit versus CA-SVMs model. First,
ROC method is used to compare the probability
maps of logit and SVMs with the observed 2010
map. ROC calculates the proportion true-positives
and false-positives for a number of thresholds and
relates them to each other in a graph. It then mea-
sures the area under the curve which varies between
0.5 (random fit) and 1 (perfect fit).

Second, the 2010 simulations (CA-logit and CA-
SVMs) are evaluated against observed 2010 map
using fuzzy map comparison. The average fuzzy
map index is an exponential decay with a halving
distance of two cells and a neighborhood with a
four-cell neighbor extent as in Hagen (2003) and
Mustafa et al. (2018a) and calculated as follows:

Ak ¼

P
xk2Xk;sim

Ixk0 � 1=2ð Þ0=2; Ixk1 � 1=2ð Þ1=2; ::::::; Ixkd � 1=2ð Þd=2
���

���
max

Xk;actul

� 100

(11)

where Ak (0 ≤ A ≥ 100) is the average fuzzy map
index for class k, Ixkd is 1 if cell xk in the simulated
map at zone d (0 ≤ d ≥ 4) is identical to one cell at
zone d in the observed map otherwise is 0, Xk,sim is
the total number of changed cells of class k in the
simulated map and Xk,actul is the total number of
changed cell of class k in the observed map.

Results and discussion

The proportion of urban land use increased from 15.9
to 16.5 percent, an area increase of 112 km2 between
2000 and 2010. Table 1 shows the calibrated coeffi-
cients of logit model.

The goodness-of-fit of the logit model is evaluated
using McFadden pseudo R-square, and its value is
0.227. Clark and Hosking (1986) reported that a
McFadden pseudo R-square value greater than 0.2
indicates a good model fitness.

The relative contribution of each driver to urbani-
zation is measured with the Odds Ratio (OR), that
equals exp(β). An OR greater than 1 indicates a
positive effect, whereas a value of less than 1 indicates
a negative effect. Logit model assesses an overall
model performance and the significance of individual
explanatory variables. All selected driving forces are
statistically significant at p-value ≤ 0.05 except for
elevation, which has p-value of 0.139.

The rank according to SVMs FFS is given in
Table 1. The results show that the FFS rank follows
the magnitude of the logit coefficients. According to
the results, the major driving forces of the urban
expansion process are related to the road network
especially local roads. According to the OR values,
distance to roads show a negative effect on the urban
process so that the non-urban to urban transitions
generally occur close to roads as in Rienow and
Goetzke (2015). Slope also shows a negative effect
on urban expansion.

In order to exclusively evaluate different models
performance, all persistent urban areas in 2000 were
excluded. When using the ROC statistic to compare
logit and SVMs approaches the curve of the SVMs
model gives the best result. It clearly reaches a stable
level much earlier than logit curve, Figure 5.

The ROC value of logit and SVMs are 0.689 and
0.723, respectively. Qualitative analysis of the probabil-
ity maps can provide some explanation for the varying
performances of the two approaches. Figure 6 presents
the probability maps based on SVMs and logit. The
major difference between the two maps is the transition
areas between high and low probability. Logit map
renders these areas as gradual transitions whereas
SVMs map renders these areas as sharp edges.

We investigate the performance of both models in
the dynamic environment of some random noises by
incorporating a stochastic perturbation (SP) term in
Equation 1 as follows:

Purbntij ¼ PDt
ij � Nt

ij � con :ð Þ � SP (12)

The SP term is calculated as follows (White &
Engelen, 1993):

Table 1. Logit model coefficients and FFS rank.
Driver Coefficient Odds ratio FFS rank

Intercept 1.60 - -
Slope −1.48 0.23 5
Elevation 0.29 1.34 6
Distance to highways −1.56 0.21 4
Distance to main roads −1.81 0.16 3
Distance to secondary roads −2.44 0.09 2
Distance to local roads −7.05 0.00 1
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SP ¼ 1þ � ln ρð Þα (13)

where ρ is a uniform random number between 0
and 1, and α is a parameter that allows to control the
degree of the SP. We set α at 0.05 as recommended by
Mustafa et al. (2014). Table 2 lists the maximum, the
average and the minimum fuzzy accuracy rates for
200 runs (100 each approach). The results reveal that

the performance of CA-SVMs is slightly improved by
introducing SP term in contrast to CA-logit. One
explanation is that CA-SVMs differentiates between
cells with higher probabilities and cells with lower
probabilities in a better way than CA-logit as shown
in Figure 6. Still the observed improvement is not
spectacular, especially when one considers the uncer-
tainty related to such models and the indirect cost of
the CA-SVMs approach. One of these costs is related
to the fact that the relative weight of the different
explanatory variables in the result is no longer made
explicit, as opposed with the logit approach.

Table 3 shows the average fuzzy accuracy rates
between the simulated urban map in 2010 predicted
by CA-SVMs runs with different neighboring sizes
and the observed urban pattern in 2010. The results

Figure 5. ROC curves of logit and SVMs.

Figure 6. Probability maps and histograms of SVMs (top) and logit (bottom).

Table 2. Average fuzzy accuracy rates of CA-SVMs and CA-
logit for 100 runs per approach considering stochastic per-
turbation term.

CA-SVMs CA-logit

Original model 31.46 29.86
Maximum 31.65 29.84
Average 31.50 29.74
Minimum 31.38 29.68

398 A. MUSTAFA ET AL.



reveal that model run with the window size of 3 × 3
produces the highest accuracy rate. This is line with
Chen et al. (2014) and Poelmans and Van Rompaey
(2009) who analyzed several neighbors window sizes
and concluded that the model run with the 3 × 3
neighborhood window produces a land use pattern
that most fits the actual pattern.

The average fuzzy accuracy of simulated urban
expansion by CA-SVMs and CA-logit based on
3 × 3 neighborhood window size in comparison to
the observed urban expansion is 31.46% and 29.86%,
respectively. One of the main reasons for the moder-
ate accuracy rate is that we selected a set of urbaniza-
tion driving forces without any insights into the
urbanization process in Wallonia, as the main focus
of the present study is evaluating the performance of
CA-SVMs vs CA-logit. Another possible source of
this moderate accuracy rate is related to uncertainties
in the decision of urban developers. However, it is
routine for CA urban expansion models, to show low
accuracy rates due to the complexity of urban envir-
onment (Jantz, Goetz, & Shelley, 2003; Mustafa et al.,
2017; Wang et al., 2013).

Conclusions

This paper has been contributed to the few number of
studies that calibrated transition rules of CA models
using SVMs. We also have assessed the performance
of CA-SVMs in comparison with CA-logit model.
Coupling CA models with SVMs or logit enables
the simultaneous dynamic simulation of land use
change process along with the analyses of a number
of controlling factors that determine change suitabil-
ity. Our model has been applied to Wallonia
(Belgium) as a case study, but the model is generic
and can be applied to other case studies nonetheless.
In such a case, an investigation of the transferability
of the model parameters is an interesting direction
for future research.

We have examined two main aspects of the accu-
racy of the model: (i) the goodness-of-fit of probabil-
ity maps and (ii) fuzziness similarity of CA-logit and
CA-SVMs models. The results show that SVM-based
probabilities exhibit a better performance compared
to those derived by logit. Furthermore, the SVMs
render the edges between low and high land use

change probability areas in a more efficient way
than logit.

Although SVMs enriches the calibration methods
of CA models, limitations of this method exist
because SVMs are relatively complex in its theory
and implementation. Moreover, due to their black-
box nature, they do not allow to ponder relative
contribution of each explanatory variable, which is a
key element for policymaking. Therefore, more stu-
dies within land use change modeling domain are
needed to improve our understanding of the requisite
mathematical and computer knowledge of SVMs.
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