Article (Scientific journals)
Stochastic multiscale model of MEMS stiction accounting for high order statistical moments of non-Gaussian contacting surfaces
Hoang Truong, Vinh; Wu, Ling; Golinval, Jean-Claude et al.
2018In Journal of Microelectromechanical Systems, 27 (2), p. 137-155
Peer Reviewed verified by ORBi
 

Files


Full Text
2018_JMEMS_NG.pdf
Author postprint (6.39 MB)
Download

© IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. This is the submitted version of the paper published in "IEEE Journal of Microelectromechanical Systems 27(2), pp. 137-155, doi: 10.1109/JMEMS.2018.2797133 " which has been published in final form on URL https://doi.org/10.1109/JMEMS.2018.2797133


All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
multiscale contact; stochastic; maximum entropy principle; adhesion; capillary; van der Waals
Abstract :
[en] Stiction is a failure mode of microelectromechanical systems (MEMS) involving permanent adhesion of moving surfaces. Models of stiction typically describe the adhesion as a multiple asperity adhesive contact between random rough surfaces, and they thus require a sufficiently accurate statistical representation of the surface, which may be non-Gaussian. If the stiction is caused primarily by multiple asperity adhesive contact in only a small portion of the apparent area of the contacting surfaces, the number of adhesive contacts between asperities may not be sufficiently statistically significant for a homogenized model to be representative. In [Hoang et al., A computational stochastic multiscale methodology for MEMS structures involving adhesive contact, Tribology International, 110:401-425, 2017], the authors have proposed a probabilistic multiscale model of multiple asperity adhesive contact that can capture the uncertainty in stiction behavior. Whereas the previous paper considered Gaussian random rough surfaces, the aim of the present paper is to extend this probabilistic multiscale model to non-Gaussian random rough surfaces whose probabilistic representation accounts for the high order statistical moments of the surface height. The probabilistic multiscale model thus obtained is validated by means of a comparison with experimental data of stiction tests of cantilever beams reported in the literature.
Research center :
A&M - Aérospatiale et Mécanique - ULiège
Disciplines :
Mechanical engineering
Author, co-author :
Hoang Truong, Vinh ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Wu, Ling ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Golinval, Jean-Claude  ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > LTAS - Vibrations et identification des structures
Arnst, Maarten ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational and stochastic modeling
Noels, Ludovic  ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Language :
English
Title :
Stochastic multiscale model of MEMS stiction accounting for high order statistical moments of non-Gaussian contacting surfaces
Publication date :
April 2018
Journal title :
Journal of Microelectromechanical Systems
ISSN :
1057-7157
eISSN :
1941-0158
Publisher :
IEEE
Special issue title :
Nonlinear Phenomena in MEMS and NEMS
Volume :
27
Issue :
2
Pages :
137-155
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture [BE]
Available on ORBi :
since 20 February 2018

Statistics


Number of views
139 (39 by ULiège)
Number of downloads
223 (16 by ULiège)

Scopus citations®
 
6
Scopus citations®
without self-citations
4
OpenCitations
 
4

Bibliography


Similar publications



Contact ORBi