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Stochastic multiscale model of MEMS stiction
accounting for high order statistical moments of

non-Gaussian contacting surfaces
T.V. Hoang, L. Wu, J.-C. Golinval, M. Arnst, L. Noels

Abstract—Stiction is a failure mode of microelectromechani-
cal systems (MEMS) involving permanent adhesion of moving
surfaces. Models of stiction typically describe the adhesion as
a multiple asperity adhesive contact between random rough
surfaces, and they thus require a sufficiently accurate statistical
representation of the surface, which may be non-Gaussian. If
the stiction is caused primarily by multiple asperity adhesive
contact in only a small portion of the apparent area of the
contacting surfaces, the number of adhesive contacts between
asperities may not be sufficiently statistically significant for
a homogenized model to be representative. In [Hoang et al.,
A computational stochastic multiscale methodology for MEMS
structures involving adhesive contact, Tribology International,
110:401-425, 2017], the authors have proposed a probabilistic
multiscale model of multiple asperity adhesive contact that can
capture the uncertainty in stiction behavior. Whereas the previous
paper considered Gaussian random rough surfaces, the aim of
the present paper is to extend this probabilistic multiscale model
to non-Gaussian random rough surfaces whose probabilistic rep-
resentation accounts for the high order statistical moments of the
surface height. The probabilistic multiscale model thus obtained
is validated by means of a comparison with experimental data
of stiction tests of cantilever beams reported in the literature.

Index Terms—multiscale contact, stochastic, maximum entropy
principle, adhesion, capillary, van der Waals

I. INTRODUCTION

Due to the reduced size of microelectromechanical systems
(MEMS), the surface effect is an important factor to be consid-
ered in their design. Indeed, between two contacting surfaces,
there naturally exist adhesive forces, e.g. van der Waals (vdW)
and capillary forces, which can lead to the failure of the
involved structures when their surfaces are unexpectedly stuck
together [1], [2], [3], [4]. That phenomenon is well-known
as the stiction failure. Many experiments were conducted to
investigate the stiction phenomenon. For instance, in [5], [6],
[7], [8], the stiction tests were implemented by considering
micro cantilever beam structures. These experiments were
implemented to measure the shortest length of the non-
contacting zone (the crack length) for each failure beam, see
Fig. 1(a), and then evaluate the apparent adhesion energy.
The experimental results showed that the adhesion energies
between rough surfaces are smaller than the theoretical ones
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Figure 1. The stiction failure of a cantilever beam structure under humid
condition: (a) the normal configuration, the arc-shape and S-shape failure
configurations (not on scale); and (b) zoom onto a part of the contact zone,
which spans from the crack tip to the beam free end, with illustration of the
condensing water area on the surface topology (not on scale).

by ratios in the range from 10−5 to 1. This range is also the
approximation of the ratio between the effective interacting
area—the area on which the adhesive stress is applied e.g. the
condensing water area in the case of capillary forces—and the
apparent one, see Fig. 1(b). These experimental results confirm
the multiple-asperity contact theory: due to the roughness
of the contacting surfaces, the contact interaction involves
only the highest asperities of the surface topology, and the
total interacting area is consequently much smaller than the
apparent one, as illustrated in Fig. 1(b) [9], [10], [11], [12],
[13]. In the context of contact between rough surfaces, the
surface topology is usually assumed as a stationary Gaussian
random field, e.g. in the Greenwood–Williamson (GW) contact
model [9]. With that assumption, the surfaces are modeled by
spherical asperities that all have an identical radius but whose
heights follow a Gaussian distribution [10]. The contact forces
are evaluated by applying the appropriate analytical contact
theory, e.g. Hertz [14], DMT [15], JKR [16], or Maugis [17],
on these spherical asperities. The integration of these analytical
contact theories is achieved at a negligible computational effort
which is the main advantage of the GW model in comparison
with full numerical methods, such as finite element (FE) meth-
ods [18], [19], [20], [21], [22], [23] and molecular dynamics
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(MD) methods [24], [25]. Nevertheless, a comparison between
experiments and numerical predictions reported in [5] shows
that higher-order statistical moments including skewness and
kurtosis of the first order marginal probability density function
(mPDF) should be accounted for to improve the accuracy of
the numerical predictions.

Moreover, the stiction failure suffers from uncertainty as
it was stated in [26]: “... why one MEMS device sticks and
another identical one does not”. One source of uncertainty
originates in the short range property of adhesive stress which
is applied on rough contacting surfaces. Due to the short
range of adhesive stress (nanometers), the effective contact
zone governing the phenomenon is limited around the crack
tip [6] in zone leff, see Fig. 1(a), and the number of contacting
asperities involved in that effective contact zone might not
be sufficient for deriving a homogenized contact behavior.
Therefore, different cantilever beams fabricated with an iden-
tical process and using an identical design could end up after
the stiction test with different configurations (free, or failure
configurations, see Fig. 1(a)), as experimentally observed in
[5], [27], [28], [29].

Although the uncertainty characteristics [30], [31], [27],
[26] and the non-Gaussianity of the surface height distri-
bution [5], [32], [33] play important roles in the stiction
phenomenon, they were either both neglected or accounted
for but individually. On the one hand, in [5], the importance
of non-Gaussian properties including the skewness and the
kurtosis of the contacting surface heights was illustrated by a
comparison between numerical predictions and experimental
results; however, only deterministic predictions were given.
On the other hand, in [30], the authors have developed a
stochastic multiscale methodology to predict the uncertainty
of the stiction phenomenon but only for Gaussian contacting
surfaces.

In this paper, we enhance the stochastic multiscale method
developed in [30] by accounting for skewness and kurtosis
when simulating the surface roughness. Numerical predictions
are compared with experimental results from [5] for the
purpose of model validation.

The randomness of the contacting rough surface is first char-
acterized and simulated. Measurements of the contacting sur-
faces, e.g. by means of atomic-force microscopy (AFM), are
usually the input data for this task. In this paper, since we do
not have direct access to AFM measurements of the contacting
surfaces, we exploit the processed data from [5] consisting
of the first few statistical moments of the first order mPDF
(variance, skewness, and kurtosis) and the summit statistical
properties (mean summit radius and summit density). We then
apply the maximum entropy (ME) method, which selects the
distribution that maximizes the entropy under the constraints
defined by the available information, e.g. statistical moments.
We use the remainder of the available information, i.e. the
summit statistical properties, to infer the PSD function. In
order to conduct Monte Carlo simulations, a surface generator
is required. In this paper, the non-Gaussian random surface is
constructed as an appropriate transformation of an underlying
Gaussian random surface as in [34], [35]; an advantage of this
construction is that realizations of the underlying Gaussian

Figure 2. The random apparent contact forces between two rough surfaces.

random surface can be efficiently generated by using spectral
representation methods [36].

The semi-analytical adhesive contact model that we have
proposed in [31] is then applied to the statistically independent
generated surfaces in order to obtain a set of samples of
random apparent adhesive contact forces, as illustrated in
Fig. 2. This adhesive contact model, motivated by the multiple
asperity contact theory, identifies the contacting asperities
directly from the generated surfaces, approximates them by
spheres and then applies the analytical asperity contact model
to evaluate the forces. In contrast to the analytical surface
contact models, e.g. GW model, the semi-analytical model can
capture the size effect and the uncertainties it induces since
the size of the generated surfaces is controlled.

The stochastic model-based multi-scale framework, which
was developed by the authors in [30], is then applied. The
method consists in constructing a FE model of the considered
MEMS structure, in which the random adhesive contact forces
are integrated as random contact laws. By performing a Monte
Carlo simulation on this model, we evaluate its probabilistic
behaviors. However, in order to reduce the computational cost
inherent to the evaluation of a large number of contact forces,
a stochastic model of the adhesive contact forces is constructed
by applying data modeling techniques.

The methodology is developed in two phases, see Fig. 3:
(i) the characterization and simulation of contacting surfaces
are described in Sec. II, and (ii) the propagation of this ran-
domness using the stochastic model-based multi-scale method
is described in Sec. III. In Sec. IV the methodology is
implemented for the cantilever beam stiction tests reported in
[5]. In Sec. V, the main objectives of this paper including:
the effects of the non-Gaussian distribution of the contact
surfaces, the uncertainty in the involved structural behaviors,
and the validation of the developed method, are reviewed. In
addition, owing to the numerical model, a sensitivity of the
surface statistical moments on the adhesion energy is analyzed,
and the uncertainty of the structural behaviors due to different
sources, i.e. from the rough contacting surfaces and from the
geometrical dimensions, are compared. Finally, conclusions
are given in Sec. VI.
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Figure 3. The overview of the methodology including the characterization and simulation of random surfaces, discussed in Sec. II, and the propagation of
surface randomness through the stochastic multi-scale model discussed in Sec. III. NMC is the number of MCS and NP is the number of integration points
of the FE model, see Sec. III for details.

II. RANDOMNESS OF SURFACES: CHARACTERIZATION AND
SIMULATION

As illustrated in Fig. 3, the first step of our methodology
consists in the characterization and the simulation of the
contacting surfaces. We model a random rough surface as a
non-Gaussian random field. Specifically, we use the method
introduced in [34] for the characterization and the simulation
of this non-Gaussian random field. This method constructs the
non-Gaussian random field as a nonlinear transformation of an
underlying stationary Gaussian random field. Since the method
requires the first order mPDF and the PSD function of the non-
Gaussian random field to be prescribed, we deduce the first
order mPDF from the variance, the skewness, and the kurtosis
of the surface heights using the ME method, and we deduce
the PSD function from the summit statistical properties.

This section is developed as follows. The estimation of
the first order mPDF is explained in Sec. II-A. The surface
generator for non-Gaussian cases is described in Sec. II-B
from the obtained first order mPDF and a given PSD function.
The construction of the PSD function from summit statistical
properties is eventually developed in Sec. II-C.

A. Estimation of the first order mPDF

The first four statistical moments mi—with i the moment
order—of the first order mPDF pZ of the non-Gaussian
random field Z(x) representing the surface height read as

mi =

∫
R

zipZ(z)dz, with i = 1, · · · , 4. (1)

The first two moments are the mean—modeled as zero—and
the variance. Normalizing the third and forth order moments,
we obtain the skewness γ, and the kurtosis β respectively as

γ =
m3

rms3
, β =

m4

rms4
, (2)

where rms =
√
m2 (< +∞) is the root mean square

roughness. In the case of a Gaussian random field, γ = 0
and β = 3. From these moments, using the ME principle, the
first order mPDF of the surface heights can be identified to
ensure the same statistical moments. The solution is given by
[37]

pZ(z) = exp(−λ0 −
4∑
i=1

λiz
i), (3)

where λ0, · · · , λ4 are five Lagrange parameters to be identi-
fied, see details in [38], [39].

B. Surfaces generator

A surface generator is constructed in this section. The input
data for the generator is the non-Gaussian first order mPDF
pZ and the PSD function sZ(ζ) with ζ = {ζ1, ζ2} ∈ R2 the
wave numbers. While pZ is obtained using the ME method
as discussed in Sec. II-A, sZ will be estimated from summit
statistical properties in Sec. II-C where the surface generator
developed in this section is required. The case of Gaussian
surface generator is firstly described before dealing with the
more complicated case of non-Gaussian surfaces.

1) Generator of Gaussian surfaces: For Gaussian random
fields, the surface generator is constructed for a prescribed
PSD function sZG following the works of Shinozuka [34] and
Poiron and Soize [36]. For a chosen value of the maximum
wave number µ, the normal height z̃ can be generated as

z̃G(x) =
√

2∆ζ2 Re

[
µ∑

l1=1

µ∑
l2=1

β(l1,l2)

√
1

(2π)2
sZG(ζl1 , ζl2)

exp
(
ix1ζl1 + ix2ζl2 + iφ(l1,l2)

)]
,

(4)
where

• the values {(ζl1 , ζl2), 1 ≤ l1, l2 ≤ µ} are samplings of
the wave number domain such that (ζl1 , ζl2) = (−ζL +
(l1 − 1)∆ζ,−ζL + (l2 − 1)∆ζ), with ∆ζ = 2ζL/µ;

• the values {φ(l1,l2), 1 ≤ l1, l2 ≤ µ} are µ × µ
independent realizations of a uniform random variable
with values in [0, 2π]; and

• the values {β(l1,l2), 1 ≤ l1, l2 ≤ µ} are such that
β(l1,l2) =

√
− log(ψ(l1,l2)), where {ψ(l1,l2), 1 ≤

l1, l2 ≤ µ} are µ×µ independent realizations of a uniform
random variable with values in ]0, 1],

and i2 = −1. Equation (4) is implemented using the fast
Fourier transformation (FFT) algorithm.

2) Generator of non-Gaussian surfaces: For non-Gaussian
random fields, the iterative generator developed in [34] is
applied in such a way that the generated surface heights have
a first order mPDF and a PSD function approximating the
target ones. In this algorithm, see Fig. 4, at each iteration (i), a
Gaussian surface z̃(i)

G is generated from the PSD function s(i)
ZG

using the Gaussian surface generator described by Eq. (4).
The PSD function s

(i)
ZG

is adapted at each iteration and is
equal to the target PSD function, sZ , for the first iteration.
In order to match the non-Gaussian first order mPDF, using
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Figure 4. Algorithm to generate non-Gaussian surfaces respecting the target
PSD sZ , and the target non-Gaussian cumulative distribution function CZ .

the cumulative distribution functions (CDFs), that Gaussian
surface is mapped to a non-Gaussian one z̃(i) following

z̃(i)(x) = C−1
Z

{
CZG

(
z̃

(i)
G (x)

)}
, (5)

where CZ and CZG

(
z̃

(i)
G (x)

)
are the CDFs of the target non-

Gaussian distribution evaluated from the first order mPDF
pZ in Sec. II-A and of the Gaussian generated surface z̃(i)

G ,
respectively. With that mapping, z̃ respects the target PDF,
however the PSD function is modified. The PSD function s(i)

Z

of the non-Gaussian mapped surface is estimated using Fourier
analysis. At the end of each iteration, an adapted PSD function
is computed following

s
(i+1)
ZG

= s
(i)
ZG

sZ

s
(i)
Z

, (6)

and is used to generate a new Gaussian surface in the next
iteration. The process is repeated until reaching the condition
s

(i)
Z ≈ sZ .

To perform MCS, a large number of numerical surfaces
is required. The first numerical surface is obtained using the
iterative algorithm. However, for the next generated surfaces,
the converged sZG , see the output box in Fig. 4, is used directly
to generate the Gaussian surfaces which are then mapped to
obtain the non-Gaussian ones, and the iterative process is thus
no longer required.

C. Estimation of the PSD function

The PSD function sZ , provided that it exists, is the (inverse)
Fourier transform of the autocovariance function (ACF). When
AFM measurements are available, the PSD function can be
evaluated using Fourier analysis [31]. In this paper, because
we do not have access to AFM measurements of the surfaces,
we use the cutoff self-affine PSD function given by

sZ(ζr)

s0
Z

=


1 if 0 ≤ ζr < ζ0

r ;(
ζr
ζ0

)log10

(
s1Z
s0z

)
/log10

(
ζmax
ζ0

)
if ζ0

r ≤ ζr ≤ ζmax ;

0 if ζmax < ζr ;
(7)

where ζr =
√
ζ2
1 + ζ2

2 , and s0
Z , s1

Z , ζmax, ζ0 are parameters to
be identified. That form of PSD function was asymptotically
verified for a large range of measured surfaces [40]. The
parameters of that PSD function are identified to satisfy
the condition that the generated surfaces fit the reported
experimental data, i.e. the density of summits, N̄sum, and
the mean radius of these summits, R̄sum. For the cases in
which the surface heights follow a Gaussian distribution, from
the mean summit radius and the summit density together
with the surface height variance, the parameters of that PSD
function can be identified using the explicit relations between
PSD moments and the summit properties developed by Nayak
in [41]. For the non-Gaussian cases considered in this paper,
since these relations are not explicitly established, the inverse
problem of the parameters identification is solved with an
iterative process initialized using Nayak’s relations[41].

III. A MULTI-SCALE STOCHASTIC FRAMEWORK FOR
ADHESIVE CONTACT

To quantify the uncertainty of MEMS structures subjected
to stiction, the stochastic model-based multi-scale method
developed by the authors in [30] is applied. The generated
samples of the contacting surfaces obtained using the generator
developed in Sec. II are the input data of the model. Contrarily
to the work in [30], non-Gaussian surfaces are considered;
apart from that the methodology is similar. The model involves
three scales.
• The lower scale is related to the randomness of the

contacting surfaces. The characteristic lengths at this
scale, lm, are the correlation lengths of the considered sur-
faces and defined using the condition: rZ(τ ) < 0.01m2,
∀ ‖τ‖ > lm

• The mesoscopic scale is related to the adhesive contact
behaviors evaluated between two rough surfaces. The
characteristic length at this scale, lmeso, characterizes the
size of these surfaces.

• The upper scale is related to the structural behaviors of
the considered micro structures. The characteristic length
at this scale, lM, is the size of these structures.

The requirement for the development of the multi-scale model
is that lmeso � lM. Because lM is small for MEMS, lmeso

and lm have the same order of magnitude. Therefore, there
exist uncertainties in the meso-scale contact behaviors. We
should remark that lmeso . leff; therefore, the local property
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of the effective contact zone, see Fig. 1(a), is involved in
the multiscale model. The probabilistic behaviors at the upper
scale of MEMS structures can thus be evaluated by accounting
for these uncertainties.

Toward this end, the straightforward solution is the MCS
applied on top of the multi-scale model of the considered struc-
ture. The goal of that method is to evaluate NMC statistically
independent structural behaviors from which their probability
is estimated. To avoid the need of explicit evaluation of a large
number of contact forces, a stochastic model for these forces is
constructed. The obtained stochastic model-based multi-scale
method, illustrated in Fig. 3, consists in:
(i) In the meso-scale model, m surface pairs are generated,

and their apparent contact forces, as illustrated in Fig. 2,
are evaluated using the semi-analytical contact model
developed in [31];

(ii) A stochastic model is constructed based on the m explic-
itly evaluated forces to efficiently generate the samples
of the random apparent contact forces;

(iii) At the structural scale model, we first construct a FE
model for the considered structure for which Np samples
of the random apparent contact forces are integrated as
random contact laws associated to the Np integration
points of that model. The MCS is then applied to that
model to evaluate NMC statistically independent struc-
tural behaviors using NMC sets of Np apparent contact
forces generated using the stochastic model.

As the number of explicitly evaluated contact forces for step
(ii) is significantly smaller than the number required in step
(iii), m � NMC × Np, the stochastic model-based multi-
scale method is more efficient in terms of computational cost
than a direct MCS approach. Those three components of the
stochastic model-based multi-scale method are summarized in
the following.

A. Semi-analytical contact model

Before describing the semi-analytical contact model, the
physical aspects of the adhesive forces involving capillary and
vdW forces are discussed.

1) Adhesive forces:
Capillary forces: When two hydrophilic surfaces enter

into contact in humid air condition they form menisci, which
induce an adhesive stress on these surfaces, see illustration
in Fig. 1(b). The capillary forces are characterized by two
parameters, the water pressure inside the meniscus and the
meniscus height. Assuming that the water pressure and the
meniscus radius are constant during the interface separation
process, the pressure is evaluated at a given relative humidity
level RH using Laplace equation as [42], [43]

∆P =
γLG

rK
=
RT lnRH

Vm
, (8)

where γLG is the liquid vapor energy, Vm is the liquid molar
volume, R is the universal gas constant, and T is the absolute
temperature. In case of water condensation Vm = 0.018 L/mol
and γLG = 0.072 N/m at T = 300 K. The MEMS contact
surfaces considered are nominally flat, thus when the contact-
ing surfaces are perfectly hydrophilic, the meniscus height is

approximated as hC = −2rK , where rK is the Kelvin radius
given by [43]

rK =
γLGVm
RT lnRH

< 0. (9)

Van der Waals force: Based on the Lennard-Jones po-
tential, the expression of vdW adhesion energy per unit area,
ωvdW, is deduced from the work expended to move the two
half spaces undergoing vdW interactions from the equilibrium
distance to infinity [17], [44], [45] leading to

ωvdW =
H

16πD2
0

, (10)

where H is the Hamaker constant, and D0 is the equilibrium
distance at which the force between the two half spaces is zero
and is given by D0 = (2/15)1/6r0 with r0 the finite distance
at which the inter-molecular potential is zero. The parameters
of vdW stress for polysilicon–the considered material in this
paper–are: the Hamaker constant H = 18.65×10−20 J through
dry air [46], and H = 9.75 × 10−20 J through water [46]
which can be due to the menisci; the distance r0 = 2.09 Å
leading to D0 = 1.49 Å. The vdW interaction is modeled
using Dugdale assumption, i.e. the stress is constant inside
the contact range [0, hvdW] and vanishes outside this range.
For silicon, hvdW = 0.97 × 21/6r0 = 2.28 Å [45]. The stress
of the vdW interaction σvdW is evaluated from the relationship
ωvdW = −σvdW × hvdW.

2) Semi-analytical adhesive contact model: The contact
between two rough surfaces, e.g. z1 versus z2, can be modeled
as the contact between an equivalent surface z = z1 + z2

and a flat surface [11]. The semi-analytical adhesive contact
model developed in [31] is thus applied on this equivalent
problem. The model is summarized in the following, firstly
for the case of capillary adhesive forces, and then for the case
both capillary and vdW forces are considered.

Because the Laplace pressure is weak (<400 MPa) in
comparison with the stiffness of polysilicon, at the equilibrium
state for which the adhesive force and elastic repulsive force
are equal, the total condensing water area is much bigger than
the physical contact area. Based on this separation, the model
accounting for capillary forces was developed in two steps,
see [31] for details:
(i) Evaluation of the elastic repulsive forces by identify-

ing the physical contacting asperities from the surface
topology, fitting these contacting asperities profiles by
spheres, and then applying Hertz contact model [14]
to evaluate the elastic repulsive contact forces and the
physical contact areas for each asperity; and

(ii) Evaluation of the adhesive force by evaluating the area
of condensing water using the water height hC , and the
surface topology, and then multiplying that area with the
Laplace pressure, Eq. (8).

The apparent adhesive contact force is obtained by adding
these forces and then dividing the result by the apparent area
of generated surfaces. With this contact model, the saturation
effect in which the menisci are merged to each other [6],
is accounted for [31]. As illustrated in Fig. 2, the apparent
force versus distance curve has two parts: the adhesive part in
which forces are negative resulting from the dominant adhesive
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interaction and the repulsive part in which forces are positive
resulting from the dominant elastic interaction.

In order to account for the vdW phenomenon, due to
its sub-nanometer range, its effects can be evaluated when
performing step (i). In that case, the elastic repulsive forces
and the adhesive forces resulting from the vdW phenomenon
are evaluated by applying the Maugis model [17] instead of
the Hertz model [30].

Since the semi-analytical contact model does not account
for irreversible behaviors, we have assessed in Appendix A
that these phenomena can be neglected for the cases studied
in Sec. IV. To this end, the ratio between the contact area
undergoing irreversible deformation and the total physical
contact area is estimated and is shown to remain negligible.
Note that in Eq. (8) we have assumed a constant Laplace
pressure, which is relevant in the case of release stiction study,
but not during cyclic loading, see the discussion in [29], [47],
and is thus consistent with neglecting irreversible behaviors
induced by cyclic loading.

B. Construction of the stochastic model of the random appar-
ent adhesive contact forces

A parametrization process is applied to identify the param-
eters vector representing the apparent adhesive contact forces.
Because the apparent adhesive contact forces evaluated on
the different generated surfaces exhibit a scatter as illustrated
in Fig. 2, the parameters vector is considered as a random
variable. The stochastic model is then constructed to generate
the samples of apparent contact forces through that random
vector.

Figure 5. The components of the parameters vector v, and the curve fitting
of a typical apparent adhesive contact force using the analytical function,
Eq. (12), whose parameters are evaluated from v.

1) Parametrization of the apparent adhesive contact forces:
An analytical function used to fit the apparent adhesive contact
forces is derived from the Morse potential with the coefficients
evaluated from the characterized parameters. Let f̄(d̄), with d̄
the contact distance, be the apparent adhesive contact forces
evaluated using the semi-analytical contact model described
in Sec. III-A. These forces are characterized by 4 parameters,
illustrated in Fig. 5, including (i) the maximum pull-out
adhesive force f̄max (> 0), (ii) the distance d̄max at which f̄
reaches −f̄max, (iii) the meso-scale apparent adhesion energy
ē (> 0), and (iv) the threshold distance d̄limit at which f̄
reaches f̄limit (> 0), the maximum considered compressive

force of interest, which can be chosen as the maximum of the
f̄max evaluated for different generated surfaces in the MCS.
Assembling these parameters, we obtain the parameters vector
v as

v = [ē, f̄max, d̄max, d̄limit]
T. (11)

The following function, derived from the Morse potential, is
used to fit the apparent adhesive contact forces

φ(d̄) =

{
f̄max(e−2aright(d̄−d̄max) − 2e−aright(d̄−d̄max)) if d̄ ≥ d̄max;

f̄max(e−2aleft(d̄−d̄max) − 2e−aleft(d̄−d̄max)) if d̄ < d̄max.
(12)

Because that analytical function has 4 fitting coefficients,
{f̄max, d̄max, aright, aleft}, it is consistent with the dimension of
the parameters vector defined in Eq. (11) and can be readily
obtained. As it is observed from Fig. 5, the proposed analytical
function described in Eq. (12) approximates well the evaluated
adhesive contact forces. Therefore, the parameters vector v,
defined by Eq. (11), is representative of the apparent adhesive
contact forces.

2) Stochastic model of random apparent adhesive contact
forces: Considering the parameters vectors v as a random vec-
tor denoted by V, a stochastic model is constructed to generate
realizations of V. The input data for the construction process
consist of m explicitly evaluated apparent contact forces,
from which the set of m corresponding physical parameters
vectors {v(1), . . . ,v(m)}—samples of V—is obtained using
the parametrization process described in Sec. III-B1. That
stochastic model [30], summarized in Appendix B, verifies
the condition of approximation in terms of distribution, i.e.
the distribution of generated samples approximates the one of
the input data as shown in Appendix B.

C. Upper scale FE model for cantilever beam structures

Figure 6. 1D beam element. Each integration point is associated with a
different sample of the random apparent adhesive contact forces, f̄r , whose
evaluated values depend on the contact distance d̄r , see Fig. 2.

Because the cantilever beam is one of the most ubiquitous
structures in the context of MEMS, and particularly was used
for stiction tests, it is considered in this paper. In the following,
we develop the FE model for beams subjected to adhesive
contact, and we integrate that model into a MCS to get the
probability of the beam stiction behaviors.

Construction of the FE model: The structural scale model
is a 1D FE model, implemented using Euler–Bernoulli beam
theory [48] and discretized into Ne elements of uniform
length le. To evaluate the nodal adhesive contact forces,
the rectangle quadrature rule is applied, i.e. the integration
points are equally spaced with the distance lquad which is
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enforced to be lmeso in this work, see Fig. 6 for the beam
element case. With this enforcement, the size effect at the
mesoscopic scale is always accounted for at the upper scale
when performing the convergence analysis, i.e. by gradually
reducing the meso-scale length lmeso, see Appendix C for the
case studied in Sec. IV. The total number of integration points
is Np. The interaction between the beam bottom surface and
the substrate is modeled by associating Np apparent adhesive
contact forces, f̄r with r = 1, · · · , Np, generated by using
the stochastic model constructed in Sec. III-B2. This modeling
method requires that the correlation of the contact forces of
neighboring integration points is negligible.

Because the nodal contact forces depend on the displace-
ment of the beam, the problem is non-linear. The FE model is
hence solved using the Newton–Raphson method –an iterative
algorithm– to reach equilibrium between internal forces result-
ing from the beam deformation, and external forces resulting
from the adhesion contact and the applied forces. Details on
the FE formulation and implementation can be found in [30].

Remark on the consistency of the generated surface size.
In order to ensure the consistency with the evaluation of the
nodal contact forces, the size of the generated surfaces used to
evaluate the apparent contact forces in Sec. III-A is chosen as
lmeso × w, see Appendix C for the identification of lmeso with
the element length le applied for the case studied in Sec. IV.
Furthermore, because the distance between two integration
points is larger than the correlation length lquad > lm, the
correlation of the neighboring contact forces is negligible [30].

Stiction simulation: To simulate the stiction, a loading-
unloading process is implemented [30], [45]. In this process,
an increasing artificial force is applied to put the cantilever
beam into contact with the substrate. After the beam reaches
a certain deformation energy higher than the expected value
of the adhesion energy, the applied force is released progres-
sively. At the end of the process, the cantilever beam could
reach the stiction failure, see Fig 1(a), with either S-shape
configuration or arc-shape configuration.

IV. CASE STUDY

In this section, the developed method is applied to model
the stiction experiments reported in [5]. In this experimental
campaign, arrays of micro polysilicon cantilever beams were
fabricated, and stiction tests were performed through the
three following steps. First, the cantilever beams were put
on the substrates made of silicon or polysilicon. Then, the
clamped ends of the beams were moved up to reach a given
height h. Due to the adhesive stress resulting from vdW and
capillary interactions, the beams exhibit the S-shape stiction
configuration, see Fig. 1(a). The crack length, ls, was measured
and used to evaluate the upper scale apparent adhesion energy
Γ (in J/m2) as

Γ =
3

2
E
h2t3

l4s
, (13)

where E is the Young’s modulus of the beam, and t is the
beam thickness [49]. For polysilicon, E=164 GPa.

Three sets of tests were conducted with two different beam
sets B1, B2 and two different substrates Sub1, Sub2: (i) pair a:

between beam set B1 and substrate Sub1, (ii) pair b: between
beam set B2 and substrate Sub1, and (iii) pair c: between beam
set B1 and substrate Sub2. Note that all the contact surfaces
were treated to become super-hydrophilic, i.e. characterized by
an almost zero contact angle. The height distribution moments
of the involved contacting surfaces, including the bottom
surfaces of two different sets of cantilever beams, B1, B2, and
the two substrate surfaces Sub1, Sub2, are reported in Tab. I.
In Tab. I, two spatial properties, the mean radius of summits
and the density of summits, are also reported. The values of
the mean summit radius and summit density depend on the
sampling distance. It was reported to be 20 nm in reference
[50] which was used for the numerical topology processing of
the considered tests in [5].

The geometrical dimensions of the beams were given as: the
beam thickness t = 2.6 µm, the beam length L = 1500 µm,
and the beam width w = 30 µm. The gap is h = 20 µm for
pairs a and b. For pair c, the value h was not reported in [5].
Because the reported values of apparent adhesion energies for
pair c are much smaller in comparison with pairs a, b, we chose
h = 2 µm in order to ensure that the modeled beams reach the
S-shape configuration. Due to the fabrication and conducted
experiment processes, the geometrical dimensions can also
vary. The effect of the geometrical dimensions uncertainties
should thus be considered and compared with the one resulting
from the random surfaces when predicting the probability of
the adhesion energies.

In the following the method developed in Secs. II and III
is implemented to model that experiment. An extension of
the model to account for the randomness of the geometrical
dimensions is then realized.

A. Characterization and simulation of contacting surfaces

Estimation of the first order mPDF: Based on the re-
ported experimental data including roughness, skewness, and
kurtosis, see Tab. I, the non-Gaussian PDFs of surface heights
are estimated using the ME method developed in Sec. II-A.
The estimated PDFs are illustrated and compared with the
Gaussian ones in Fig. 7. In all cases, the values of skewness
are negative. As a result, in comparison with the distributions
obtained using the ME method, the Gaussian distributions for
which the skewness is zero are more shifted to the higher
asperities. Consequently, the apparent adhesion energy can be
underestimated if one uses a Gaussian distribution to model
the surface heights. This fact will be quantified by a sensitivity
analysis and will be confirmed by numerical results in Sec. V.

Estimation of the PSD function: The parameters of the
cutoff self-affine PSD function, defined in Eq. (7), are identi-
fied following the method described in Sec. II-C to satisfy the
reported spatial parameters including the density of summits
and the mean radius of theses summits, reported in Tab. I. The
identified parameters for the considered experimental surfaces
are reported in Tab. II.

Generation of surfaces: Based on the estimated first
order mPDFs and the constructed PSD functions, the nu-
merical surfaces are generated using the method described
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Table I
COMPARISON BETWEEN AFM MEASUREMENT SURFACES REPORTED IN [5] AND SIMULATION SURFACES, GENERATED USING GAUSSIAN DISTRIBUTION

(SIM-G) AND NON-GAUSSIAN DISTRIBUTION (SIM-NG) OF SURFACE HEIGHTS, IN TERMS OF ROUGHNESS, SKEWNESS, KURTOSIS, MEAN RADIUS OF
SUMMITS (R̄SUM ), AND DENSITY OF SUMMITS (N̄SUM ).

Bottom surfaces Substrates
of the cantilever beams (polysilicon)

B1 B2 Sub1 (silicon wafer) Sub2 (polysilicon)
AFM Sim-NG Sim-G AFM Sim-NG Sim-G AFM Sim-NG Sim-G AFM Sim-NG Sim-G

rms [nm] 1.7 1.7 1.7 3.4 3.4 3.4 0.17 0.17 0.17 5.5 5.5 5.5
γ [-] -0.78 -0.78 0 -0.76 -0.76 0 -0.31 -0.31 0 -1.1 -1.1 0
β [-] 4.6 4.6 3 3.9 3.9 3 3.1 3.1 3 5.1 5.1 3

R̄sum [µm] 0.41 0.41 0.30 0.84 0.85 0.56 3.0 3.0 3.0 0.12 0.14 0.09
N̄sum [µm−2] 68 63 71 20.9 20.0 29.2 111.5 109 115 48 59 68

pair a: B1 vs Sub1, pair b: B2 vs Sub1, pair c: B1 vs Sub2
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Figure 7. The estimated first order mPDFs using ME method with the moments given in Tab. I: : B1 (a), B2 (b), Sub1 (c), Sub2 (d).

Table II
THE PARAMETERS OF THE CONSTRUCTED PSD FUNCTIONS GIVEN BY

EQ. (7).

B1 B2 Sub1 Sub2
s0Z [nm4] 525 1438 3.5 2471
s1Z [nm4] 0.8 0.3 0.001 0.2
ζ0 [rad·µm−1] 32 12 10 56
ζmax [rad·µm−1] 138 125 264 157

in Sec. II-B. The generated surfaces are illustrated in Fig. 8
for 2D illustration and in Fig. 9 for 1D illustration. As it is
observed in Fig. 10, the PSD function of the generated non-
Gaussian surfaces preserves well the target one confirming the
convergence of the iterative algorithm described in Sec. II-B.

From the generated surfaces, the summits can be identified
togethe with their radius and their heights. The joint distri-
butions of the summit heights and summit radii (logarithmic
scaled) obtained for two cases –Gaussian distribution and
non-Gaussian distribution of surface heights, see Fig. 7– are
illustrated in Fig. 11 for the surface B2. As it is observed

from Fig. 11, by accounting for the non-Gaussian properties,
the heights of summits involved in the physical interaction,
i.e. the highest ones, are less scattered, and the summits radii
are larger, i.e. the mean of summits radii is 0.85 µm for non-
Gaussian case and 0.56 µm for Gaussian case. This fact is also
observed in Fig. 9. When the height distribution of the highest
summits is less scattered, more summits are simultaneously
involved in the contact interaction, and consequently, the
adhesion forces increase while their uncertainties are reduced
following the law of large numbers. For example in [6], using
an analytical model, authors have shown that the adhesion
energies are larger for larger summit radii and uniformly
distributed summit heights.

The comparison between measurement data and simulated
surfaces is reported Tab. I. The moments, including roughness,
skewness and kurtosis, are modeled with accuracy. For the
spatial properties, because the PSD functions are indirectly
estimated using the cutoff self-affine formulation, Eq. (7),
there exist errors in the density and the mean radius of
the summits. These errors are negligible for B2 and Sub1,
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(a) (b)

(c) (d)

Figure 8. Examples of the generated non-Gaussian surfaces: B1 (a), B2 (b), Sub1 (c), Sub2 (d).
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Figure 9. Comparison of generated surfaces between two cases: (a) using the Gaussian distribution of surface heights, and (b) using the non-Gaussian
distribution of surface heights. The surface B2 is considered.
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Figure 10. Comparison of the PSD functions for the case of B1 between the
target one constructed using Eq. (7) with the coefficients given in Tab. II, and
the one evaluated from their corresponding non-Gaussian generated surfaces.

moderate for B1, and significant for Sub2, i.e. 17% for the
mean radius of summits and 23% for the density of summits.
As a result, the numerical results might deviate from the
experimental data for the pair c in which the substrate Sub2 is
involved. This fact will be confirmed during the comparison
between numerical results and experimental ones in Sec. V.

Remarks. Among the cases, the distribution of surface
heights in case of Sub1 is close to a Gaussian distribution
see Tab. I. As a result, the errors of the generated Gaussian
surfaces compared to the AFM measurements in terms of
the mean radius and the density of the summits are small
and comparable with the generated non-Gaussian surfaces.
However, in the other cases, the errors are significant be-
tween Gaussian generated surfaces and AFM measurements.
In fact, the generated Gaussian surfaces can be improved by
constructing the PSD function toward the goal of matching
the mean radius and the density of summits for the Gaussian
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Figure 11. The joint distributions of the summit heights and the logarithmic
scaled summit radii evaluated from the generated surfaces for two cases of
surface heights distributions: (a) Gaussian and (b) non-Gaussian. The surface
B2 is considered.

generated surfaces as performed in [30]. Here, since the
surface height distributions of the considered cases including
B1, B2, and Sub2 expose a strong non-Gaussian characters,
the non-Gaussianity is required to be accounted for to further
improve the accuracy when representing the real surfaces using
the generated ones.

B. Propagation of surface randomness using the stochastic
model-based multi-scale method

The stochastic model-based multi-scale method, discussed
in Sec. III and illustrated in Fig. 3, is implemented for the
study case.

Evaluation of the apparent adhesive contact forces: Us-
ing the surfaces generator developed in Sec. IV-A, m = 5000
couples of surfaces of size lmeso×w are generated. The value
of lmeso is chosen as 1.5 µm following the argumentation given
in Appendix C. The semi-analytical contact model described
in Sec. III-A is applied to evaluate the apparent contact forces,
with some realizations illustrated in Fig. 12(b, e, h). Also in
Fig. 12(a, d, g), the apparent contact forces obtained using
a Gaussian distribution of surface height are illustrated. As
it is observed from the comparison between the first two
columns of Fig. 12, the adhesive forces are underestimated
when considering Gaussian distributions as expected. We note
that irreversible behaviors are negligible for the considered
cases, see the detailed justification in Appendix A.

Sensitivity analysis: A sensitivity analysis is implemented
to study the dependency of the meso-scale apparent contact

forces on the statistical moments of the contact surfaces,
e.g. standard derivation, skewness, and kurtosis. To this end,
the normalized derivatives of the mean and of the standard
deviation of the meso-scale apparent adhesion energy ē, with
respect to the normalized statistical moments of the contact
surfaces, are evaluated for the case of pair b are illustrated in
Fig. 13. It is observed from Fig. 13 that both the mean and
standard deviation of the meso-scale apparent adhesion energy
strongly depend on the skewness and kurtosis. On the one
hand, an increase of the kurtosis or of the standard deviation
of the asperity heights increases the number of asperities in
the tails, and thus decreases the average meso-scale apparent
energy. On the other hand, an increase of the skewness leads
to a less uniform distribution of higher asperities as illustrated
in Fig. 9, and thus to a decrease of the average meso-scale
apparent energy. In addition, these sensitivities significantly
increase, in absolute value, when reducing the humidity level.
This confirms the importance of skewness and kurtosis when
predicting adhesive contact.

Construction of the stochastic model: The evaluated
apparent contact forces are the input data to construct the
stochastic models described in Sec. III-B, see details of
their construction in Appendix B-C. The apparent contact
forces generated using the stochastic model, as illustrated
in Fig. 12(c, f, i), represent the randomness observed in
the explicitly evaluated apparent contact forces illustrated in
Fig. 12(b, e, h).

Evaluation of the probabilistic behavior of micro can-
tilever beams subjected to stiction phenomenon: Using the
constructed stochastic model, Np = l/lmeso = 1000 apparent
contact forces are generated efficiently. Integrating these Np
apparent contact forces as random contact laws into the FE
model of the cantilever beam described in Sec. III-C, and using
that model to simulate the stiction process, a corresponding S-
shape stiction failure is obtained. From the obtained shape,
the crack length is measured and the corresponding upper
scale apparent adhesion energy is evaluated using Eq. (13).
Applying the MCS method, that process is independently
repeated NMC = 1000 times. In Fig. 14(a), the obtained S-
shape configurations for the case of pair b at RH = 65% are
visualized, and in Fig. 14(b), the histogram of the correspond-
ing crack lengths is illustrated. The simulations result in a set
of NMC values of the apparent adhesion energies from which
their distribution is evaluated. The results of the adhesive
contact energies for the three tests at different humidity levels,
for the cases of Gaussian and non-Gaussian contact surfaces,
are illustrated and compared with the experimental data in
Fig. 15(a, c, e).

C. Accounting for the geometrical uncertainties

In order to account for the effect of the randomness of the
geometrical dimensions, including beam width, beam length,
beam thickness, and the gap height, on the apparent adhesion
energies, the current model is extended by considering these
dimensions as random variables. For a sake of study purposes,
these parameters are modeled as Gaussian random variables
with the standard deviation equal to 2.5% of their mean values.
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Figure 12. The apparent contact forces: first column, (a, d, g), evaluated forces for Gaussian generated surfaces corresponding to the pair a, the pair b, and
the pair c respectively; second column, (b, e, h) evaluated forces for non-Gaussian generated surfaces corresponding to the pair a, the pair b, and the pair c
respectively; third column, (c, f, i), generated forces using the stochastic model developed in Appendix B-C corresponding to the pair a, the pair b, and the
pair c respectively. For each figure, 20 realizations are highlighted out of the 200 ones. Humidity condition: RH = 0.65.

The obtained results are compared with the experimental data
in Fig. 15(b, d, f).

V. DISCUSSION

In the following, we bring out the comparison between
the experimental results and the numerical results evaluated
for three cases: (G) Gaussian contacting surfaces, (NG) non-
Gaussian contacting surfaces, and (GEO) extending the case
(NG) to account for the geometrical uncertainties. The com-
parison is conducted with the apparent adhesion energies
illustrated in Fig. 15, and the crack lengths obtained from
the numerical model and from the experiments as reported
in Tabs. III. Based on that comparison, we discuss four
issues: the effect of non-Gaussian height distribution of the
contact surfaces, the evolution of the adhesion energies and of
their uncertainty with the humidity level and the roughness,
the effect of the uncertain geometrical dimensions, and the
validation of the developed method.

Effect of the non-Gaussian distribution of contact surface
heights: As it is observed from the first column of Fig. 15
when accounting for the non-Gaussian effect, the numerical
results are significantly more accurate in predicting the ex-
perimental results. For these considered cases, the apparent
adhesion energies are increased and their uncertainties are
decreased when accounting for non-Gaussian properties. It is
explained by the fact that the heights of contacting asperities
are less prone to scatter, see Fig. 9. Conversely, if the asperities
heights had been prone to more scatter, e.g. if the skewness
of surface heights had been positive, the apparent adhesion
energy would have decreased as compared with the Gaussian
cases. The effect can be quantified from Fig. 13, e.g. at
RH = 0.44, a 10% augmentation in terms of kurtosis or
skewness leads to a reduction respectively of 89% and 64%
in terms of the mean of the meso-scale apparent adhesion
energies.
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Table III
THE COMPARISON OF THE CRACK LENGTHS ls IN [µM] OBTAINED FROM EXPERIMENTS [5] AND FROM NUMERICAL MODELS FOR PAIRS A, B, C AT

DIFFERENT HUMIDITY LEVELS. TWO NUMERICAL MODELS ARE REPORTED: MODEL NG FOR WHICH NON-GAUSSIAN SURFACES ARE CONSIDERED, AND
MODEL GEO WHICH EXTENDS THE NG MODEL WITH THE RANDOM GEOMETRICAL DIMENSIONS. THE NUMERICAL RESULTS ARE REPORTED UNDER THE

FORM: MEAN ± STANDARD DEVIATION. THE VALUES OF EXPERIMENTAL RESULTS ARE OBTAINED FROM THE ILLUSTRATION OF APPARENT ADHESION
ENERGIES REPORTED IN [5].

Pair a
Humidity levels 0.45 0.6 0.7 0.75 0.8 0.9
ls (experiment) 718±28 604±24 582±24 503±20 465±15 362±18

ls (model NG) 716±9 569±6 494±4 448±3 420±3 353±3
ls (model GEO) 715±20 567±14 494±12 448±11 420±10 353±8
Bias error 0.4% 6% 15% 11% 10% 3%

Pair b
Humidity levels 0.44 0.55 0.67 0.8 0.88 0.92
ls (experiment) 952 ±60 857±31 705±24 564±22 519±17 420±10

ls (model NG) 1031±38 878±26 710±16 538±8 434±4 391±3
ls (model GEO) 1031±45 878±34 710±23 537±14 434±10 390±9
Bias error 8% 3% 0.7% 5% 16% 7%

Pair c
Humidity levels 0.6 0.65 0.72 0.8 0.85 0.9
ls (experiment) 770 ±62 767±60 593±44 438±21 383±12 289±12

ls (model NG) 1200±131 1014±99 752±61 436±20 301±9 192±3
ls (model GEO) 1201±131 1016±105 752±68 436±24 303±11 192±5
Bias error 56% 32% 27% 0.5% 21% 34%
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Figure 13. Sensitivity analysis for the case of pair b: the local derivations
of (a) the mean and (b) the standard deviation of the meso-scale apparent
adhesion energy with respect to standard deviation (std), skewness, and
kurtosis of contacting surfaces B2.

The evolution of the apparent adhesion energies and of
their uncertainty: From both experimental results and the
numerical predictions, it is observed that the apparent adhesion
energies increase with the humidity level and decrease with the
roughness. It is deduced that the contribution of the capillary

interaction is dominant on the vdW one in this problem,
and that the apparent adhesion energies significantly depend
on the topology of the contacting surfaces as expected. In
addition, because the interacting areas are smaller for the lower
adhesion energies, the lower the adhesion energy the larger
its uncertainty. This fact is observed from both numerical
predictions and experimental results for pair b and pair c, see
Fig. 15. For pair a, that trend is not significant. It is explained
by: (i) the uncertainty of adhesion energies resulting from the
random surfaces is small as the apparent adhesion energies
and the interacting area are higher for the case of pair a,
Γ/(2γLG) ≥ 10% for RH ≥ 60%, compared to the other
pairs; and (ii) there are other uncertainty sources whose effects
are independent of the contact behavior, e.g. the uncertainty
of the geometrical dimensions discussed in the following.

Effect of the uncertainty on geometrical dimensions: As
it is observed from Fig. 15, for the low apparent adhesion en-
ergies, e.g. Γ/(2γLG) ≤ 10%, the uncertainties resulting from
the scatter in the geometrical dimensions are less important
than the ones from the rough surfaces; however they become
dominant for the higher values of apparent energies, e.g. the
case of pair a for RH ≥ 60%, since the effective contact areas
increase.

Validation of the developed method: We remark that there
is an error when estimating PSD functions indirectly using
the cutoff self-affine formulation described in Eq. (7), see
Tab. I. From the comparison in Tab. I between the experimental
surfaces and generated surfaces in terms of the mean radius
of the summits and their density, the error is negligible for
B2 and Sub1 (involved in pair b), moderate for B1 (involved
in pair a), and significant for Sub2 (involved in pair c).
Interestingly, the deviations between experimental data and
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Figure 14. MCS of the beam subjected to stiction for the case of pair b at RH = 0.65. (a) 1000 realizations of beam structures with a highlighted one, (b)
Histogram of the crack lengths obtained from MCS.
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Figure 15. Comparison in terms of the apparent adhesion energies between experimental (Exp) data and numerical (Num) results. Each row corresponds to
one pair: pair a, pair b, pair c (from top to bottom). The numerical results include three cases: (G) Gaussian contacting surfaces, (NG) non-Gaussian contacting
surfaces, and (GEO) extension of case (NG) to account for the uncertainty in the geometrical dimensions. The cases (G) and (NG) are illustrated in the first
column (a, c, e), while second column, (b, d, f), reports the results for the case (GEO).

numerical results have the same order: small for pair b (except
for RH = 0.88), moderate for pair a, and significant for
pair c, see Fig. 15 and Tab. III. Considering the pair c, in

comparison with the two other pairs, the reported experimental
adhesion energies of pair c are the lowest ones with values in
the range Γ ∈ [0.035, 2.7] mJ/m2 for RH ∈ [0.6, 0.9]. Based
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on these values, the ratio between the interacting area and the
apparent one is of the order of Γ/(2γLG) ∈ [0.03%, 1.9%].
With such a small part of the topology involved in the contact
interaction, the sensitivity on the predicted apparent adhesion
energies on the input data including the first order mPDF and
the PSD function is significant. Therefore, the errors resulting
from the indirect estimation of the PSD function, as discussed
previously, lead to an important deviation of the numerical
predictions which is observed in Tab. III for pair c.

A remark follows from that comparison: when dealing with
contact problems in which the ratios of the interacting areas
to the apparent areas are small, e.g < 2% for the considered
cases, a high accuracy is required when estimating the height
distribution and the PSD functions. In practice, this could
demand an important effort on the whole process including the
measurement using AFM on which the size and the sampling
length are defined, the processing of AFM data for which the
filters are applied, and the numerical characterization of the
processed data to obtain the first order mPDF and the PSD
function.

VI. CONCLUSION

Because of the small size of MEMS, adhesive contact can
lead to their failure. Furthermore, due to the roughness of the
contacting surfaces and the short range of the adhesive stress
(nanometers), there exists an uncertainty in the behavior of mi-
crostructures subjected to adhesion. To evaluate the probabilis-
tic MEMS behaviors, we have developed a stochastic model-
based multi-scale method in which the effect of the non-
Gaussian heights distribution of the contacting surfaces was
accounted for. The model consists in: (i) the characterization
and simulation of the non-Gaussian random surfaces, and (ii)
the propagation of the randomness of the contacting surfaces
through a multi-scale FE model to quantify the uncertainty
in the structural behaviors. The model was also extended to
account for the randomness of the geometry dimensions. With
the developed model, the stiction risk of a micro-structure can
be investigated in a probabilistic way at its design stage.

The developed model was verified with experimental data
of cantilever beam stiction tests reported in the literature. Al-
though we do not have direct access to the AFM measurements
of surfaces to implement accurately the characterization step,
the evaluation of the adhesion energies with their uncertainties
in terms of roughness and humidity level are well predicted.
Using the numerical model, the following observations are
pointed out and verified by the experimental results:
(i) Non-Gaussianity of contacting surfaces is an important

factor in predicting stiction risk. Since the contacting
area is small in comparison with the apparent one, and
since the contact involves only the highest asperities, the
tail of the surface heights distribution plays a significant
role in the adhesive contact. Using the ME method, the
first order mPDF of the contact surface heights was es-
timated accounting for the non-Gaussian characteristics.
For the studied cases, the apparent adhesion energies are
increased compared to the cases of Gaussian distribution
because of the negative skewness.

(ii) Uncertainty is an important aspect of stiction risk. Be-
cause the number of contacting asperities are smaller
for the lower apparent adhesion energies, the smaller
these energies the larger their uncertainties. The effect of
random surfaces on the probabilistic adhesion behaviors
is important for the low apparent adhesion energies, e.g
<10% of the theoretical one for the considered cases, and
becomes negligible in comparison with the one due to the
geometry dimensions uncertainty for the higher energies.

(iii) The numerical investigation shows that the smaller the
adhesion energies the higher the accuracy required when
characterizing the random surfaces by the first order
mPDF and the PSD function.

In the deterministic cases, the contact behaviors, including
friction coefficient [10], do not depend on the nominal contact
area but on the applied forces. However, the model developed
in this work shows that uncertainties arise when the effective
contact area involved during stiction is not sufficiently large
to obtain a statistically representative contact behavior: the
smaller the nominal surface area, the larger the uncertainty in
the adhesive contact forces. The model thus partly answers the
question raised in [26]: “... why one MEMS device sticks and
another identical one does not”

In a future work, other experiments with a direct access
to AFM measures of the surfaces involved during the stiction
tests are required in order to further validate the model. Fur-
thermore, experiments are mandatory to identify the relation
between statistical properties of surfaces and their fabrication
method. Combining such a Process-Structure-Properties (PSP)
linkage to our stochastic multi-scale model of stiction would
allow optimizing the fabrication process with respect to an
accepted stiction risk.

Finally the model developed in this paper does not account
for irreversible processes, such as plasticity and damage [51],
[52], [4], [53], which affect the surface properties, hence the
stiction behavior, in particular under cyclic working condi-
tions. These aspects will be investigated in a future work by
substituting the asperity model considered in this work by
a more evolved semi-analytical micro-mechanical model of
surface interaction, e.g. based on a combination of conjugate
gradient method, discrete convolution and Fast Fourier Trans-
form allowing elasto-plasticity [54], [55] and/or adhesion [56]
to be accounted for. However when considering cyclic loading,
the constant Laplace pressure assumption in the meniscus
might also have to be modified following the argumentation
in [29], [47].

APPENDIX A
EVALUATION OF THE IRREVERSIBLE BEHAVIORS

A. Development of a criterion

When considering the contact problem between a sphere of
radius R and a flat surface, the maximum stress predicted by
Hertz model is

σmax =
2

π
E′
√
δ

R
, (14)

where E′ =
[
(1 − ν2

1)/E1 + (1 − ν2
2)/E2

]−1
, and δ is the

interference. Irreversible behavior can thus be assessed with
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the work of Tabor [57] stating that the onset of plastic or
irreversible deformation occurs when σmax > 0.6σH , where
σH is the material hardness. To assess the importance of plastic
deformation in the rough surfaces contact problems, one can
examine the ratio AP /A, where A is the total physical contact
area of all contacting asperities, and AP is the physical contact
area of the asperities such that σmax > 0.6σH .

In their work, Greenwood and Williamson [9] have shown
that this ratio mainly depends on a plasticity index ΨP

and that when ΨP < 0.6, plastic deformation is negligible
since AP /A < 0.02, while for ΨP > 1, plasticity becomes
dominant since AP /A > 0.5. In this work, since GW model
is not applied, the plasticity index cannot be used and we
evaluate the ratio AP /A directly from the semi-analytical
contact model.

B. Application to the considered surfaces

The maximum stress (14) for each identified asperity for the
surfaces of pairs a, b, and c, see Tab. I, is illustrated in Fig 16.
In these figures, we consider contact distances d̄ well below
the adhesive part of the contact curves, see Fig. 12, in order to
consider a worst-case scenario. The hardness of (poly)silicon is
σH = 12.8 GPa. As it is observed from Fig 16, in all the cases,
the maximum stresses are smaller than 0.6σH = 7.7 GPa. In
other words, the areas AP are zero. Therefore, the negligibility
of the irreversible deformation is confirmed.

APPENDIX B
STOCHASTIC MODEL OF RANDOM MESO-SCALE APPARENT

CONTACT FORCES.

In this appendix, the development of the stochastic model
is summarized from our previous work [30], and then imple-
mented for the stiction model reported in Sec. IV. The stochas-
tic model is constructed using the generalized polynomial
chaos expansion (gPCE) method [58], [59], [60]. The input
data is a set of m explicitly evaluated apparent contact forces,
from which the set of m corresponding physical parameters
vectors {v(1), . . . ,v(m)}—samples of the random vector V—
is obtained using the parametrization process described in Sec-
tion III-B1. The value m is chosen to satisfy the condition that
the distribution of the random vector V evaluated from these
input data has converged. The stochastic model is constructed
in two steps: (i) data processing and (ii) construction of the
stochastic model using gPCE on the processed data.

A. Input data processing

There are two procedures applied on the input data, intro-
duction of the physical constraints and dimension reduction,
explained in the following.

1) Introduction of physical constraints: There are three
physical constraints applied on the vector v: (i) ē ≥ 0, (ii)
f̄max ≥ 0; and (ii) d̄max > d̄limit, see Fig. 5. In order to
precondition these constraints, we introduce a standardized
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Figure 16. The maximum elastic stress evaluated by Eq. (14) for the identified
contacting asperities in the cases: (a) pair a with contact distance d̄=2.2 nm;
(b) pair b with contact distance d̄=5.7 nm; (c) pair c with contact distance
d̄=9 nm.

random vector Q representing the random vector V whose
samples {q(1), . . . ,q(m)} are evaluated as

q(k) =
[ log(ē(k))

σlog(ē)
,

log(f̄
(k)
max)

σlog(f̄max)

,
d̄

(k)
max

σd̄max

,
log(d̄

(k)
max − d̄(k)

limit)

σlog(d̄max−d̄limit)

]T
,

with k = 1, . . . ,m ,
(15)

where σ· is the standard deviation of the random variable ·.
Note that the random vector Q is free from physical constraints
and valued in R4. With this mathematical formulation, the
random vector V evaluated from random vector Q by using
the inversion of Eq. (15) automatically respects the physical
bounds.

2) Linear dimension reduction: The linear dimension re-
duction technique [61], [62], [63] is applied to reduce the
effect of the curse of dimensionality. Applying the principal
component transformation, we deduce the random vector H
with its realization η evaluated by

ηT = (q− q̄)T[A][Λ]−1/2, (16)

where [A] = [a1, . . . ,a4] is a normalized matrix of the 4
eigenvectors of the covariance matrix [CQ], [Λ] = diag(λ) is
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a diagonal matrix of the 4 corresponding ordered eigenvalues
λ1 ≥ ... ≥ λ4 ≥ 0, and q̄ is the mean vector. Mean
vector q̄ and covariance matrix [CQ] are evaluated from the
samples {q(1), . . . ,q(m)}. Thanks to the arrangement of the
eigenvalues, the following approximation is achieved:

qi ' q̄i +

Ng∑
j=1

√
λjAijηj , for i = 1, . . . , 4 and Ng ≤ 4.

(17)
That approximation implies that the random vector Q can be
represented by the Ng-dimensional random vector H̃ with its
realizations η̃ defined by the first Ng components of the vector
η,

η̃ = {η1, . . . , ηNg}. (18)

B. Stochastic model

There exists a mapping from the random vector H̃ to
the random vector V using the sequence of Eqs. (17, 15).
Therefore, the stochastic model is constructed on the random
vector H̃ as a truncated Nd-order gPCE formulated as

H̃PC =

N∑
α=1

cαΨα(Ξ)︸ ︷︷ ︸
Nd-order gPCE

d.
≈ H̃, (19)

where
d.
≈ means the approximation in terms of distribution,

c1, . . . , cN are vectors of coefficients in RNg to be identified,
and where Ψ1(Ξ), . . . ,ΨN (Ξ) are the renumbered orthogonal
Legendre polynomials defined in Ξ ∈ [0, 1]Ng and whose or-
ders are lower than or equal to Nd. The number of polynomials
in this expansion is N = (Nd +Ng)!/Ng!Nd!.

The coefficients c1, . . . , cN are identified in order to en-
sure the approximation in terms of distribution as stated
by Eq. (19). The identification of these coefficients was
developed in [30] following two steps: (i) estimating the
conditional CDFs of the random vector H̃ from its m samples
{η̃(1), ..., η̃(m)} by using kernel density estimation, and (ii)
projecting the inverse functions of these CDFs on the Legendre
polynomials to evaluate the gPCE coefficients.

C. Implementation of the stochastic model for the stiction
model reported in Sec. IV

The stochastic model of the apparent contact forces is
implemented for the stiction test explained in Sec. IV. The
value of m is chosen based on a convergence analysis of
the PDF of the random vector V, see Fig. 17(a) for the
case of apparent adhesion energy ē. From that analysis, we
chose m = 5000. From the m input samples of the random
vector V, the data processing including the enforcement of
physical constraints and the dimension reduction is performed.
The reduced dimension number Ng is identified through the
investigation of the error given by ErrDR(Ng) =

λNg+1+···+λ4

λ1+···+λ4
.

As it is observed from Fig. 17(b), the reduced dimension
number can be chosen as three. The gPCE model is devel-
oped for the random vector H̃ resulting from the dimension
reduction process. As it is observed from the convergence of

the gPCE model illustrated in Fig. 18, the 12th-order gPCE
model approximates accurately the distribution of the input
data.

From the generated samples of the uniformly distributed
random vector Ξ, one can calculate the corresponding samples
of the random vector H̃ using the converged gPCE model,
and then evaluate the corresponding samples v of the random
vector V using the sequence Eqs. (17, 15). From these
samples, the corresponding apparent adhesive contact forces
are constructed using Eq. (12), see Fig. 12(c, f, i) for their
illustration.

APPENDIX C
IDENTIFICATION OF THE ELEMENT LENGTH AND OF THE

MESO-SCALE LENGTH FOR THE APPLICATION REPORTED IN
SEC. IV

The element length le and the meso-scale length lmeso are
identified using a convergence analysis. Toward this end, we
consider the deterministic problem for which the adhesive
behavior between the beam bottom surface and the substrate is
uniform. The adhesive behavior is modeled using one realiza-
tion, illustrated in Fig. 19(a), of the random apparent contact
forces. The FE method developed in Sec. III-C is applied to
evaluate the crack length and upper-scale apparent adhesion
energy Γ given by Eq. (13). We note that for this deterministic
problem, the upper scale apparent adhesion energy Γ is the
adhesion energy ē of the apparent adhesive contact force, see
Fig. 5. The convergence analysis is achieved by comparing
the FE prediction with the adhesion energy ē, as illustrated in
Fig. 19(b). We can chose the element length and the meso-
scale length as le = 7.5 µm and lmeso = 1.5 µm as they lead
to a numerical prediction with a difference of 2.5% compared
to the analytical ones.

This analysis confirms that with lmeso = 1.5 µm the
variation of the central beam for the distance lmeso is negligible
in comparison with the range of the adhesive behavior. In
Fig. 19(c), the ACFs of the considered surfaces, see Tab. I,
are illustrated. The identified value of lmeso is bigger than
the correlation lengths at which the ACFs of the considered
surfaces almost vanish, ∼ 0.3 [µm].

REFERENCES

[1] J. A. Knapp and M. P. de Boer, “Mechanics of microcantilever beams
subject to combined electrostatic and adhesive forces,” Journal of
Microelectromechanical Systems, vol. 11, no. 6, pp. 754–764, 2002.

[2] S. J. Timpe and K. Komvopoulos, “An experimental study of sidewall
adhesion in microelectromechanical systems,” Journal of microelec-
tromechanical systems, vol. 14, no. 6, pp. 1356–1363, 2005.

[3] W. M. Van Spengen, R. Puers, and I. De Wolf, “A physical model to
predict stiction in MEMS,” Journal of Micromechanics and Microengi-
neering, vol. 12, no. 5, p. 702, 2002.

[4] Y.-P. Zhao, L. S. Wang, and T. Yu, “Mechanics of adhesion
in MEMS – a review,” Journal of Adhesion Science and
Technology, vol. 17, no. 4, pp. 519–546, 2003. [Online]. Available:
https://doi.org/10.1163/15685610360554393

[5] X. Xue, A. A. Polycarpou, and L. M. Phinney, “Measurement and mod-
eling of adhesion energy between two rough microelectromechanical
system (MEMS) surfaces,” Journal of Adhesion Science and Technology,
vol. 22, no. 5-6, pp. 429–455, 2008.

[6] M. de Boer, “Capillary adhesion between elastically hard rough
surfaces,” Experimental Mechanics, vol. 47, pp. 171–183, 2007.
[Online]. Available: http://dx.doi.org/10.1007/s11340-006-0631-z



17

−2.8 −2.6 −2.4 −2.2 −2
0

1

2

3

4

5

log10(ē [J/m
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