[en] Plants are the major source of Biogenic Volatile Organic Compounds (BVOCs) which have a large influence on atmospheric chemistry and the climate system. Therefore, understanding of BVOC emissions from all abundant plant species at all developmental stages is very important. Nevertheless, investigations on BVOC emissions from even the most widespread agricultural crop species are rare and mainly confined to the healthy green leaves.
Senescent leaves of grain crop species could be an important source of BVOCs as almost all the leaves senesce on the field before being harvested. For these reasons, BVOC emission measurements have been performed on maize (Zea mays L.), one of the most cultivated crop species in the world, at all the leaf developmental stages. The measurements were performed in controlled environmental conditions using dynamic enclosures and proton transfer reaction mass spectrometry (PTR-MS). The main compounds emitted by senescent maize leaves were
methanol (31% of the total cumulative BVOC emission on a mass of compound basis) and acetic acid (30%), followed by acetaldehyde (11%), hexenals (9%) and m/z 59 compounds (acetone/propanal) (7%). Important differences were observed in the temporal emission profiles of the compounds, and both yellow leaves during chlorosis and dry brown leaves after chlorosis were identified as important senescence-related BVOC sources. Total cumulative BVOC emissions from senescent maize leaves were found to be among the highest for senescent
Poaceae plant species. BVOC emission rates varied strongly among the different leaf developmental stages, and senescent leaves showed a larger diversity of emitted compounds than leaves at earlier stages. Methanol was the compound with the highest emissions for all the leaf developmental stages and the contribution from the younggrowing, mature, and senescent stages to the total methanol emission by a typical maize leaf was 61, 13, and 26%, respectively. This study shows that BVOC emissions from senescent maize leaves cannot be neglected and further investigations in field conditions are recommended to further constrain the BVOC emissions from this important C4 crop species.
Bachy, Aurélie ; Université de Liège - ULiège > Ingénierie des biosystèmes (Biose) > Biosystems Dynamics and Exchanges
Digrado, Anthony ; Université de Liège - ULiège > Ingénierie des biosystèmes (Biose) > Biosystems Dynamics and Exchanges
Heinesch, Bernard ; Université de Liège - ULiège > Ingénierie des biosystèmes (Biose) > Biosystems Dynamics and Exchanges
Aubinet, Marc ; Université de Liège - ULiège > Ingénierie des biosystèmes (Biose) > Biosystems Dynamics and Exchanges
Fauconnier, Marie-Laure ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Chimie des agro-biosystèmes
Delaplace, Pierre ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Ingénierie des productions végétales et valorisation
du Jardin, Patrick ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Ingénierie des productions végétales et valorisation
Amelynck, Crist
Language :
English
Title :
Biogenic volatile organic compound emissions from senescent maize leaves and a comparison with other leaf developmental stages
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Atkinson, R., Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 34:12–14 (2000), 2063–2101, 10.1016/S1352-2310(99)00460-4.
Aalto, J., Kolari, P., Hari, P., Kerminen, V.-M., Schiestl-Aalto, P., Aaltonen, H., Levula, J., Siivola, E., Kulmala, M., Bäck, J., New foliage growth is a significant, unaccounted source for volatiles in boreal evergreen forests. Biogeosciences 11 (2014), 1331–1344, 10.5194/bg-11-1331-2014.
Bachy, A., Aubinet, M., Schoon, N., Amelynck, C., Bodson, B., Moureaux, C., Heinesch, B., Are BVOC exchanges in agricultural ecosystems overestimated? Insights from fluxes measured in a maize field over a whole growing season. Atmos. Chem. Phys. 16 (2016), 5343–5356, 10.5194/acp-16-5434-2016.
Bracho-Nunez, A., Welter, S., Staudt, M., Kesselmeier, J., Plant-specific volatile organic compound emission rates from young and mature leaves of Mediterranean vegetation. J. Geophys. Res., 116(D16), 2011, 10.1029/2010JD015521.
Castaldo, D., Laratta, B., Loiudice, R., Giovane, A., Quagliuolo, L., Servillo, L., Presence of residual pectin methylesterase activity in thermally stabilized industrial fruit preparations. LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft -Technol.) 30 (1997), 479–484, 10.1006/fstl.1996.0211.
Crespo, E., Graus, M., Gilman, J.B., Lerner, B.M., Fall, R., Harren, F.J.M., Warneke, C., Volatile organic compound emissions from elephant grass and bamboo cultivars used as potential bioethanol crop. Atmos. Environ. 65 (2013), 61–68, 10.1016/j.atmosenv.2012.10.009.
Das, M., Kang, D., Aneja, V.P., Lonneman, W., Cook, D.R., Wesely, M.L., Measurements of hydrocarbon air–surface exchange rates over maize. Atmos. Environ. 37:16 (2003), 2269–2277, 10.1016/S1352-2310(03)00076-1.
de Gouw, J.D., Howard, C.J., Custer, T.G., Fall, R., Emissions of volatile organic compounds from cut grass and clover are enhanced during the drying process. Geophys. Res. Lett. 26:7 (1999), 811–814, 10.1029/1999GL900076.
de Gouw, J.D., Howard, C.J., Custer, T.G., Baker, B.M., Fall, R., Proton-Transfer Chemical-Ionization Mass Spectrometry allows real-time analysis of volatile organic compounds released from cutting and drying of crops. Environ. Sci. Technol. 34:12 (2000), 2640–2648, 10.1021/es991219k.
Eller, A.S.D., Sekimoto, K., Gilman, J.B., Kuster, W.C., de Gouw, J.A., Monson, R.K., Graus, M., Crespo, E., Warneke, C., Fall, R., Volatile organic compound emissions from switchgrass cultivars used as biofuel crops. Atmos. Environ. 45:19 (2011), 3333–3337, 10.1016/j.atmosenv.2011.03.042.
Ellis, A.M., Mayhew, C.A., Proton Transfer Reaction Mass Spectrometry: Principles and Applications. 2013, Wiley, Chichester.
Fechter, J.-O., Englund, F., Lundin, A., Association between temperature, relative humidity and concentration of volatile organic compounds from wooden furniture in a model room. Wood Mater. Sci. Eng. 1:2 (2006), 69–75, 10.1080/17480270600900551.
Fall, R., Abundant oxygenates in the atmosphere: a biochemical perspective. Chem. Rev. 103:12 (2003), 4941–4952, 10.1021/cr0206521.
Fall, R., Benson, A.A., Leaf methanol - the simplest natural product from plants. Trends Plant Sci. 1 (1996), 296–301, 10.1016/S1360-1385(96)88175-0.
Fall, R., Karl, T., Hansel, A., Jordan, A., Lindinger, W., Volatile organic compounds emitted after leaf wounding: on-line analysis by proton-transfer-reaction mass spectrometry. J. Geophys. Res.: Atmos. 104:D13 (1999), 15963–15974, 10.1029/1999JD900144.
Fall, R., Karl, T., Jordan, A., Lindinger, W., Biogenic C5 VOCs: release from leaves after freeze–thaw wounding and occurrence in air at a high mountain observatory. Atmos. Environ. 35:22 (2001), 3905–3916, 10.1016/S1352-2310(01)00141-8.
Folkers, A., Hüve, K., Ammann, C., Dindorf, T., Kesselmeier, J., Kleist, E., Kuhn, U., Uerlings, R., Wildt, J., Methanol emissions from deciduous tree species: dependence on temperature and light intensity. Plant Biol. 10 (2008), 65–75, 10.1111/j.1438-8677.2007.00012.x.
Galbally, I.E., Kirstine, W., The production of methanol by flowering plants and the global cycle of methanol. J. Atmos. Chem. 43 (2002), 195–229, 10.1023/A:1020684815474.
Gan, S., Amasino, R.M., Making sense of senescence (molecular genetic regulation and manipulation of leaf senescence). Plant Physiol. 113:2 (1997), 313–319.
Graus, M., Eller, A., Fall, R., Yuan, B., Qian, Y., Westra, P., de Gouw, J., Warneke, C., Biosphere-atmosphere exchange of volatile organic compounds over C4 biofuel crops. Atmos. Environ. 66 (2013), 161–168, 10.1016/j.atmosenv.2011.12.042.
Guenther, A.B., Jiang, X., Heald, C., Sakulyanontvittaya, T., Duhl, T., Emmons, L.K., Wang, X., The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN 2.1): an extended and updated framework for modelling biogenic emissions. Geosci. Model Dev. (GMD) 5 (2012), 1471–1492, 10.5194/gmd-5-1471-2012.
Harley, P., Greenberg, J., Niinemets, Ü., Guenther, A., Environmental controls over methanol emission from leaves. Biogeosciences 4 (2007), 1083–1099, 10.5194/bg-4-1083-2007.
Hatanaka, A., The biogeneration of green odour by green leaves. Phytochemistry 34 (1993), 1201–1218, 10.1016/0031-9422(91)80003-J.
Holopainen, J.K., Heijari, J., Oksanen, E., Alessio, G.A., Leaf volatile emissions of betula pendula during autumn coloration and leaf fall. J. Chem. Ecol. 36:10 (2010), 1068–1075, 10.1007/s10886-010-9857-4.
Holopainen, J.K., Gershenzon, J., Multiple stress factors and the emission of plant VOCs. Trends Plant Sci. 15 (2010), 176–184, 10.1016/j.tplants.2010.01.006.
Hüve, K., Christ, M.M., Kleist, E., Uerlings, R., Niinemets, U., Walter, A., Wildt, J., Simultaneous growth and emission measurements demonstrate an interactive control of methanol release by leaf expansion and stomata. J. Exp. Bot. 58 (2007), 1783–1793, 10.1093/jxb/erm038.
Ikan, R., Rubinszialn, Y., Nissenbaum, A., Kaplan, I.R., Ikan, R., (eds.) The Maillard Reaction: Consequences for the Chemical and Life Sciences, 1996, John Wiley, New York, 1–25.
Inomata, S., Tanimoto, H., A quantitative examination of the detection sensitivities of proton-transfer reaction mass spectrometry for gaseous 2-propanol and acetic acid. Bull. Chem. Soc. Jpn. 83 (2010), 900–904, 10.1246/bcsj.20100043.
Jardine, K., Karl, T., Lerdau, M., Harley, P., Guenther, A., Mak, J.E., Carbon isotope analysis of acetaldehyde emitted from leaves following mechanical stress and anoxia. Plant Biol. 11:4 (2009), 591–597, 10.1111/j.1438-8677.2008.00155.x.
Karl, T., Fall, R., Jordan, A., Lindinger, W., On-line analysis of reactive VOCs from urban lawn mowing. Environ. Sci. Technol. 35:14 (2001), 2926–2931, 10.1021/es010637y.
Karl, T., Guenther, A., Jordan, A., Fall, R., Lindinger, W., Eddy covariance measurement of biogenic oxygenated VOC emissions from hay harvesting. Atmos. Environ. 35 (2001), 491–495, 10.1016/S1352-2310(00)00405-2.
Karl, T., Guenther, A., Lindinger, C., Jordan, A., Fall, R., Lindinger, W., Eddy covariance measurements of oxygenated volatile organic compound fluxes from crop harvesting using a redesigned proton-transfer-reaction mass spectrometer. J. Geophys. Res.: Atmos. 106:D20 (2001), 24157–24167.
Karl, T., Harren, F., Warneke, C., Gouw, J.D., Grayless, C., Fall, R., Senescing grass crops as regional sources of reactive volatile organic compounds. J. Geophys. Res., 110(D15), 2005, 10.1029/2005JD005777.
Keskitalo, J., Bergquist, G., Gardeström, P., Jansson, S., A cellular timetable of autumn senescence. Plant Physiol. 139:4 (2005), 1635–1648, 10.1104/pp.105.066845.
Kesselmeier, J., Bode, K., Gerlach, C., Hork, E.-M., Exchange of atmospheric formic and acetic acids with trees and crop plants under controlled chamber and purified air conditions. Atmos. Environ. 32:10 (1998), 1765–1775, 10.1016/S1352-2310(97)00465-2.
Kreuzwieser, J., Kuhnemann, F., Martis, A., Rennenberg, H., Urban, W., Diurnal pattern of acetaldehyde emission by flooded poplar trees. Physiol. Plantarum 108:1 (2000), 79–86, 10.1034/j.1399-3054.2000.108001079.x.
Kuhn, U., Rottenberger, S., Biesenthal, T., Wolf, A., Schebeske, G., Ciccioli, P., Brancaleoni, E., Frattoni, M., Tavares, T.M., Kesselmeier, J., Isoprene and monoterpene emissions of Amazonian tree species during the wet season: direct and indirect investigations on controlling environmental functions. J. Geophys. Res.: Atmos., 107(D20), 2002, 10.1029/2001JD000978 LBA 38-1–LBA 38-13.
Laffineur, Q., Aubinet, M., Schoon, N., Amelynck, C., Müller, J.-F., Dewulf, J., Van Langenhove, H., Steppe, K., Heinesch, B., Abiotic and biotic control of methanol exchanges in a temperate mixed forest. Atmos. Chem. Phys. 12 (2012), 577–590, 10.5194/acp-12-577-2012.
Laothawornkitkul, J., Taylor, J.E., Paul, N.D., Hewitt, C.N., Biogenic volatile organic compounds in the Earth system. New Phytol. 183 (2009), 27–51.
Lindinger, W., Hansel, A., Jordan, A., On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass-spectrometry (PTR-MS) – medical applications, food control and environmental research. Int. J. Mass Spectrom. Ion Process. 173:3 (1998), 191–241.
MacDonald, R.C., Fall, R., Detection of substantial emissions of methanol from plants to the atmosphere, Atmospheric Environment. Part A General Topics 27 (1993), 1709–1713, 10.1016/0960-1686(93)90233-O.
Mozaffar, A., Schoon, N., Digrado, A., Bachy, A., Delaplace, P., du Jardin, P., Fauconnier, M.-L., Aubinet, M., Heinesch, B., Amelynck, C., Methanol emissions from maize: ontogenetic dependence to varying light conditions and guttation as an additional factor constraining the flux. Atmos. Environ. 43 (2017), 405–417, 10.1016/j.atmosenv.2016.12.041.
Nemecek-Marshall, M., MacDonald, R.C., Franzen, J.J., Wojciechowski, C.L., Fall, R., Enzymatic detection of gas-phase methanol and relation of methanol fluxes to stomatal conductance and leaf development. Plant Physiol. 108 (1995), 1359–1368.
Ozuna, R., Yera, R., Ortega, K., Tallman, G., Analysis of guard cell viability and action in senescing leaves of Nicotiana glauca (graham), tree tobacco. Plant Physiol. 79 (1985), 7–10.
Pang, X., Biogenic volatile organic compound analyses by PTR-TOF-MS: calibration, humidity effect and reduced electric field dependency. J. Environ. Sci. 32 (2015), 196–206, 10.1016/j.jes.2015.01.013.
Pierik, R., Ballaré, C.L., Dicke, M., Ecology of plant volatiles: taking a plant community perspective. Plant Cell Environ. 37 (2014), 1845–1853, 10.1111/pce.12330.
Prochazkova, D., Sairam, R.K., Srivastava, G.C., Singh, D.V., Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Sci. 161:4 (2001), 765–771, 10.1016/S0168-9452(01)00462-9.
Rottenberger, S., Kuhn, U., Wolf, A., Schebeske, G., Oliva, S.T., Tavares, T.M., Kesselmeier, J., Exchange of short-chain aldehydes between Amazonian vegetation and the atmosphere. Ecol. Appl. 14 (2004), 247–262, 10.1890/01-6027.
Scala, A., Allmann, S., Mirabella, R., Haring, M., Schuurink, R., Green Leaf Volatiles: a plant's multifunctional weapon against herbivores and pathogens. Int. J. Mol. Sci. 14:9 (2013), 17781–17811, 10.3390/ijms140917781.
Schade, G.W., Goldstein, A.H., Fluxes of oxygenated volatile organic compounds from a ponderosa pine plantation. J. Geophys. Res. 106 (2001), 3111–3123, 10.1029/2000JD900592.
Schaeffer, V.H., Bhoosan, B., Chen, S., Sonenthal, J.S., Hodgson, A.J., Characterisation of volatile organic chemical emissions from carpet cushions. J. Air Waste Manag. Assoc. 46:9 (1996), 813–820, 10.1080/10473289.1996.10467516.
Schwarz, K., Filipiak, W., Amann, A., Determining concentration patterns of volatile compounds in exhaled breath by PTR-MS. J. Breath Res., 3, 2009, 027002, 10.1088/1752-7155/3/2/027002.
Springer, A., Kang, C., Rustgi, S., von Wettstein, D., Reinbothe, C., Pollmann, S., Reinbothe, S., Programmed chloroplast destruction during leaf senescence involves 13-lipoxygenase (13-LOX). Proc. Natl. Acad. Sci. Unit. States Am. 113:12 (2016), 3383–3388.
Steckel, V., Knöpfle, A., Ohlmeyer, M., Effects of climatic test parameters on acetic acid emission from beech. Holzforschung 67 (2013), 47–51, 10.1515/hf-2011-0237.
Su, T., Parametrization of kinetic energy dependences of ion-polar molecule collision rate constants by trajectory calculation. J. Chem. Phys., 100, 1994, 4703, 10.1063/1.466255.
Takahashi, Y., Tsubaki, S., Sakamoto, M., Watanabe, S., Azuma, J., Growth-dependent chemical and mechanical properties of cuticular membranes from leaves of Sonneratia alba. Plant Cell Environ. 35 (2012), 1201–1210, 10.1111/j.1365-3040.2012.02482.x.
Taiz, L., Zeiger, E., Moller, I.M., Murphy, A., Plant Physiology and Development. sixth ed., 2015, Sinauer Associates, Sunderland, CT.
Tani, A., Hayward, S., Hewitt, C.N., Measurement of monoterpenes and related compounds by proton transfer reaction-mass spectrometry. Int. J. Mass Spectrom. 223/22 (2003), 561–578, 10.1016/S1387-3806(02)00880-1.
Warneke, C., Karl, T., Judmaier, H., Hansel, A., Jordan, A., Lindinger, W., Crutzen, P.J., Acetone+propanal, methanol, and other partially oxidized volatile organic emissions from dead plant matter by abiological processes: significance for atmospheric HOx chemistry. Global Biogeochem. Cycles 13:1 (1999), 9–17.
Warneke, C., Luxembourg, S.L., de Gouw, J.A., Rinne, H.J.I., Guenther, A.B., Fall, R., Disjunct eddy covariance measurements of oxygenated volatile organic compounds fluxes from an alfalfa field before and after cutting. J. Geophys. Res., 107(D8), 2002, 10.1029/2001JD000594 ACH 6-1–ACH 6-10.
Wohlfahrt, G., Amelynck, C., Ammann, C., Arneth, A., Bamberger, I., Goldstein, A.H., Gu, L., Guenther, A., Hansel, A., Heinesch, B., Holst, T., Hörtnagl, L., Karl, T., Laffineur, Q., Neftel, A., McKinney, K., Munger, J.W., Pallardy, S.G., Schade, G.W., Seco, R., Schoon, N., An ecosystem-scale perspective of the net land methanol flux: synthesis of micrometeorological flux measurements. Atmos. Chem. Phys. 15 (2015), 7413–7427, 10.5194/acp-15-7413-2015.
Woo, H.R., Kim, H.J., Nam, H.G., Lim, P.O., Plant leaf senescence and death - regulation by multiple layers of control and implications for aging in general. J. Cell Sci. 126:21 (2013), 4823–4833, 10.1242/jcs.109116.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.