Schvartzman Echenique, Maria Sol ; Université de Liège - ULiège > Département des sciences de la vie > Génomique fonctionnelle et imagerie moléculaire végétale
Corso, Massimiliano
Fataftha, Nazeer
Scheepers, Maxime ; Université de Liège - ULiège > Département des sciences de la vie > Génomique fonctionnelle et imagerie moléculaire végétale
Nouet, Cécile ; Université de Liège - ULiège > Département des sciences de la vie > Génomique fonctionnelle et imagerie moléculaire végétale
Bosman, Bernard ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Ecologie végétale et microbienne
Carnol, Monique ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Ecologie végétale et microbienne
Motte, Patrick ; Université de Liège - ULiège > Département des sciences de la vie > Génomique fonctionnelle et imagerie moléculaire végétale
Verbruggen, Nathalie
Hanikenne, Marc ; Université de Liège - ULiège > Département des sciences de la vie > Génomique fonctionnelle et imagerie moléculaire végétale
Language :
English
Title :
Adaptation to high zinc depends on distinct mechanisms in metallicolous populations of Arabidopsis halleri
Abadía J, López-Millán A-F, Rombolà A, Abadía A. 2002. Organic acids and Fe deficiency: a review. Plant and Soil 241: 75–86.
Arrivault S, Senger T, Krämer U. 2006. The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply. Plant Journal 46: 861–879.
Baliardini C, Meyer C-L, Salis P, Saumitou-Laprade P, Verbruggen N. 2015. CAX1 co-segregates with Cd tolerance in the metal hyperaccumulator Arabidopsis halleri and plays a role in limiting oxidative stress in Arabidopsis. Plant Physiology 169: 549–559.
Becher M, Talke IN, Krall L, Krämer U. 2004. Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant Journal 37: 251–268.
Bert V, Bonnin I, Saumitou-Laprade P, De Laguérie P, Petit D. 2002. Do Arabidopsis halleri from non metallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations? New Phytologist 155: 47–57.
Bert V, MacNair MR, De Laguérie P, Saumitou-Laprade P, Petit D. 2000. Zinc tolerance and accumualtion in metallicolous and non metallicolous populations of Arabidopsis halleri (Brassicaceae). New Phytologist 146: 225–233.
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114–2120.
Brumbarova T, Bauer P, Ivanov R. 2015. Molecular mechanisms governing Arabidopsis iron uptake. Trends in Plant Science 20: 124–133.
Charlier JB, Polese C, Nouet C, Carnol M, Bosman B, Krämer U, Motte P, Hanikenne M. 2015. Zinc triggers a complex transcriptional and post-transcriptional regulation of the metal homeostasis gene FRD3 in Arabidopsis relatives. Journal of Experimental Botany 66: 3865–3878.
Claus J, Bohmann A, Chavarría-Krauser A. 2013. Zinc uptake and radial transport in roots of Arabidopsis thaliana: a modelling approach to understand accumulation. Annals of Botany 112: 369–380.
Colangelo EP, Guerinot ML. 2004. The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. Plant Cell 16: 3400–3412.
Cornu J, Deinlein U, Horeth S, Braun M, Schmidt H, Weber M, Persson DP, Husted S, Schjoerring JK, Clemens S. 2015. Contrasting effects of nicotianamine synthase knockdown on zinc and nickel tolerance and accumulation in the zinc/cadmium hyperaccumulator Arabidopsis halleri. New Phytologist 206: 738–750.
Corso M, Schvartzman MS, Guzzo F, Souard F, Malkowski E, Hanikenne M, Verbruggen N. 2018. Contrasting cadmium resistance strategies in two metallicolous populations of Arabidopsis halleri. New Phytologist 218: 283–297.
Courbot M, Willems G, Motte P, Arvidsson S, Roosens N, Saumitou-Laprade P, Verbruggen N. 2007. A major QTL for Cd tolerance in Arabidopsis halleri Co-localizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiology 144: 1052–1065.
Curie C, Cassin G, Couch D, Divol F, Higuchi K, Le Jean M, Misson J, Schikora A, Czernic P, Mari S. 2009. Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Annals of Botany 103: 1–11.
Dahmani-Muller H, van Oort F, Gelie B, Balabane M. 2000. Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environmental Pollution 109: 231–238.
Deinlein U, Weber M, Schmidt H, Rensch S, Trampczynska A, Hansen TH, Husted S, Schjoerring JK, Talke IN, Krämer U et al. 2012. Elevated nicotianamine levels in Arabidopsis halleri roots play a key role in zinc hyperaccumulation. Plant Cell 24: 708–723.
Dräger DB, Desbrosses-Fonrouge AG, Krach C, Chardonnens AN, Meyer RC, Saumitou-Laprade P, Krämer U. 2004. Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc tolerance and account for high MTP1 transcript levels. Plant Journal 39: 425–439.
Durrett TP, Gassmann W, Rogers EE. 2007. The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiology 144: 197–205.
Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460–2461.
Emms DM, Kelly S. 2015. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biology 16: 157.
Eroglu S, Meier B, von Wirén N, Peiter E. 2016. The vacuolar manganese transporter MTP8 determines tolerance to iron deficiency-induced chlorosis in Arabidopsis. Plant Physiology 170: 1030–1045.
Frérot H, Faucon MP, Willems G, Gode C, Courseaux A, Darracq A, Verbruggen N, Saumitou-Laprade P. 2010. Genetic architecture of zinc hyperaccumulation in Arabidopsis halleri: the essential role of QTL × environment interactions. New Phytologist 187: 355–367.
Godbold DL, Horst WJ, Collins JC, Thurman DA, Marschner H. 1984. Accumulation of zinc and organic acids in roots of zinc tolerant and non-tolerant ecotypes of Deschampsia caespitosa. Journal of Plant Physiology 116: 59–69.
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29: 644–652.
Green LS, Rogers EE. 2004. FRD3 controls iron localization in Arabidopsis. Plant Physiology 136: 2523–2531.
Guimarães MD, Gustin JL, Salt DE. 2009. Reciprocal grafting separates the roles of the root and shoot in zinc hyperaccumulation in Thlaspi caerulescens. New Phytologist 184: 323–329.
Hanikenne M, Baurain D. 2014. Origin and evolution of metal p-Type ATPases in Plantae (Archaeplastida). Frontiers in Plant Science 4: 544.
Hanikenne M, Kroymann J, Trampczynska A, Bernal M, Motte P, Clemens S, Krämer U. 2013. Hard selective sweep and ectopic gene conversion in a gene cluster affording environmental adaptation. PLoS Genetics 9: e1003707.
Hanikenne M, Nouet C. 2011. Metal hyperaccumulation and hypertolerance: a model for plant evolutionary genomics. Current Opinion in Plant Biology 14: 252–259.
Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Krämer U. 2008. Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453: 391–395.
Haydon MJ, Kawachi M, Wirtz M, Hillmer S, Hell R, Krämer U. 2012. Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in arabidopsis. Plant Cell 24: 724–737.
Houot L, Floutier M, Marteyn B, Michaut M, Picciocchi A, Legrain P, Aude J-C, Cassier-Chauvat C, Chauvat F. 2007. Cadmium triggers an integrated reprogramming of the metabolism of Synechocystis PCC6803, under the control of the Slr1738 regulator. BMC Genomics 8: 350.
Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobbett CS. 2004. P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16: 1327–1339.
Jardim-Messeder D, Caverzan A, Rauber R, de Souza Ferreira E, Margis-Pinheiro M, Galina A. 2015. Succinate dehydrogenase (mitochondrial complex II) is a source of reactive oxygen species in plants and regulates development and stress responses. New Phytologist 208: 776–789.
Koornneef M, Meinke D. 2010. The development of Arabidopsis as a model plant. Plant Journal 61: 909–921.
Krämer U. 2005. MTP1 mops up excess zinc in Arabidopsis cells. Trends in Plant Science 10: 313–315.
Krämer U. 2010. Metal hyperaccumulation in plants. Annual Review in Plant Biology 61: 517–534.
Krämer U, Talke IN, Hanikenne M. 2007. Transition metal transport. FEBS Letters 581: 2263–2272.
Krishnakumar V, Hanlon MR, Contrino S, Ferlanti ES, Karamycheva S, Kim M, Rosen BD, Cheng C-Y, Moreira W, Mock SA et al. 2015. Araport: the Arabidopsis Information Portal. Nucleic Acids Research 43: D1003–D1009.
Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods 9: 357–359.
Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12: 323.
Li J, Xu H, Song Y, Tang L, Gong Y, Yu R, Shen L, Wu X, Liu Y, Zeng W. 2016. Geography plays a more important role than soil composition on structuring genetic variation of pseudometallophyte Commelina communis. Frontiers in Plant Science 7: 1085.
Lin YF, Liang HM, Yang SY, Boch A, Clemens S, Chen CC, Wu JF, Huang JL, Yeh KC. 2009. Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter. New Phytologist 182: 392–404.
Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15: 550.
Maere S, Heymans K, Kuiper M. 2005. BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks. Bioinformatics 21: 3448–3449.
Maurer F, Naranjo Arcos MA, Bauer P. 2014. Responses of a triple mutant defective in three iron deficiency-induced BASIC HELIX-LOOP-HELIX genes of the subgroup Ib(2) to iron deficiency and salicylic acid. PLoS ONE 9: e99234.
Merlot S, de Sanchez Garcia la Torre V, Hanikenne M. 2018. Physiology and molecular biology of trace element hyperaccumulation. In: Echevarria G, van der Ent A, Morel JL, Baker AJM, eds. Agromining: farming for metals. Extracting unconventional resources using plants. Cham, Switzerland: Springer, 93–116.
Meyer C-L, Juraniec M, Huguet S, Chaves-Rodriguez E, Salis P, Isaure M-P, Goormaghtigh E, Verbruggen N. 2015. Intraspecific variability of cadmium tolerance and accumulation, and cadmium-induced cell wall modifications in the metal hyperaccumulator Arabidopsis halleri. Journal of Experimental Botany 66: 3215–3227.
Meyer C-L, Kostecka AA, Saumitou-Laprade P, Créach A, Castric V, Pauwels M, Frérot H. 2010. Variability of zinc tolerance among and within populations of the pseudometallophyte species Arabidopsis halleri and possible role of directional selection. New Phytologist 185: 130–142.
Meyer C-L, Pauwels M, Briset L, Godé C, Salis P, Bourceaux A, Souleman D, Frérot H, Verbruggen N. 2016. Potential preadaptation to anthropogenic pollution: evidence from a common quantitative trait locus for zinc and cadmium tolerance in metallicolous and nonmetallicolous accessions of Arabidopsis halleri. New Phytologist 212: 934–943.
Meyer C-L, Peisker D, Courbot M, Craciun AR, Cazale AC, Desgain D, Schat H, Clemens S, Verbruggen N. 2011. Isolation and characterization of Arabidopsis halleri and Thlaspi caerulescens phytochelatin synthases. Planta 234: 83–95.
Meyer C-L, Vitalis R, Saumitou-Laprade P, Castric V. 2009. Genomic pattern of adaptive divergence in Arabidopsis halleri, a model species for tolerance to heavy metal. Molecular Ecology 18: 2050–2062.
Milner MJ, Seamon J, Craft E, Kochian LV. 2013. Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. Journal of Experimental Botany 64: 369–381.
Mondragon M, John-Arputharaj A, Pallmann M, Dresselhaus T. 2017. Similarities between reproductive and immune pistil transcriptomes of Arabidopsis species. Plant Physiology 174: 1559–1575.
van de Mortel JE, Almar Villanueva L, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, Loren Ver, van Themaat E, Koornneef M, Aarts MG. 2006. Large expression differences in genes for iron and zinc homeostasis, stress response and lignin biosynthesis distinguish Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiology 142: 1127–1147.
Nouet C, Charlier JB, Carnol M, Bosman B, Farnir F, Motte P, Hanikenne M. 2015. Functional analysis of the three HMA4 copies of the metal hyperaccumulator Arabidopsis halleri. Journal of Experimental Botany 66: 5783–5795.
Palmer CM, Hindt MN, Schmidt H, Clemens S, Guerinot ML. 2013. MYB10 and MYB72 are required for growth under iron-limiting conditions. PLoS Genetics 9: e1003953.
Pauwels M, Vekemans X, Godé C, Frérot H, Castric V, Saumitou-Laprade P. 2012. Nuclear and chloroplast DNA phylogeography reveals vicariance among European populations of the model species for the study of metal tolerance, Arabidopsis halleri (Brassicaceae). New Phytologist 193: 916–928.
Perea-García A, Garcia-Molina A, Andrés-Colás N, Vera-Sirera F, Pérez-Amador MA, Puig S, Peñarrubia L. 2013. Arabidopsis copper transport protein COPT2 participates in the cross talk between iron deficiency responses and low-phosphate signaling. Plant Physiology 162: 180–194.
Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Research 29: e45.
Pineau C, Loubet S, Lefoulon C, Chalies C, Fizames C, Lacombe B, Ferrand M, Loudet O, Berthomieu P, Richard O. 2012. Natural variation at the FRD3 MATE transporter locus reveals cross-talk between Fe homeostasis and Zn tolerance in Arabidopsis thaliana. PLoS Genetics 8: e1003120.
Ravet K, Touraine B, Boucherez J, Briat JF, Gaymard F, Cellier F. 2009a. Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis. Plant Journal 57: 400–412.
Ravet K, Touraine B, Kim SA, Cellier F, Thomine S, Guerinot ML, Briat JF, Gaymard F. 2009b. Post-translational regulation of AtFER2 ferritin in response to intracellular iron trafficking during fruit development in Arabidopsis. Molecular Plant 2: 1095–1106.
Robinson NJ, Procter CM, Connolly EL, Guerinot ML. 1999. A ferric-chelate reductase for iron uptake from soils. Nature 397: 694–697.
Rogers EE, Guerinot ML. 2002. FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis. Plant Cell 14: 1787–1799.
Ruijter JM, Ramakers C, Hoogaars WMH, Karlen Y, Bakker O, van den Hoff MJB, Moorman AFM. 2009. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Research 37: e45.
Sarry J-E, Kuhn L, Ducruix C, Lafaye A, Junot C, Hugouvieux V, Jourdain A, Bastien O, Fievet JB, Vailhen D et al. 2006. The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics 6: 2180–2198.
Schaaf G, Honsbein A, Meda AR, Kirchner S, Wipf D, von Wirén N. 2006. AtIREG2 encodes a tonoplast transport protein involved in iron-dependent nickel detoxification in Arabidopsis thaliana roots. Journal of Biological Chemistry 281: 25532–25540.
Schmid NB, Giehl RFH, Döll S, Mock H-P, Strehmel N, Scheel D, Kong X, Hider RC, von Wirén N. 2014. Feruloyl-CoA 6′-hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis. Plant Physiology 164: 160–172.
Seguela M, Briat JF, Vert G, Curie C. 2008. Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growth-dependent pathway. Plant Journal 55: 289–300.
Shahzad Z, Gosti F, Frérot H, Lacombe E, Roosens N, Saumitou-Laprade P, Berthomieu P. 2010. The five AhMTP1 zinc transporters undergo different evolutionary fates towards adaptive evolution to zinc tolerance in Arabidopsis halleri. PLoS Genetics 6: e1000911.
Shanmugam V, Lo JC, Wu CL, Wang SL, Lai CC, Connolly EL, Huang JL, Yeh KC. 2011. Differential expression and regulation of iron-regulated metal transporters in Arabidopsis halleri and Arabidopsis thaliana - the role in zinc tolerance. New Phytologist 190: 125–137.
Shanmugam V, Lo J-C, Yeh K-C. 2013. Control of Zn uptake in Arabidopsis halleri: a balance between Zn and Fe. Frontiers in Plant Science 4: 281.
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13: 2498–2504.
Smith-Unna R, Boursnell C, Patro R, Hibberd JM, Kelly S. 2016. TransRate: reference-free quality assessment of de novo transcriptome assemblies. Genome Research 26: 1134–1144.
Stein RJ, Höreth S, de Melo JRF, Syllwasschy L, Lee G, Garbin ML, Clemens S, Krämer U. 2017. Relationships between soil and leaf mineral composition are element-specific, environment-dependent and geographically structured in the emerging model Arabidopsis halleri. New Phytologist 213: 1274–1286.
Talke IN, Hanikenne M, Krämer U. 2006. Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiology 142: 148–167.
Usadel B, Poree F, Nagel A, Lohse M, Czedik-Eysenberg A, Stitt M. 2009. A guide to using MapMan to visualize and compare Omics data in plants: a case study in the crop species, Maize. Plant, Cell & Environment 32: 1211–1229.
Verbruggen N, Hermans C, Schat H. 2009. Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist 181: 759–776.
Vert G, Barberon M, Zelazny E, Seguela M, Briat JF, Curie C. 2009. Arabidopsis IRT2 cooperates with the high-affinity iron uptake system to maintain iron homeostasis in root epidermal cells. Planta 229: 1171–1179.
Vert G, Grotz N, Dédaldéchamp F, Gaymard F, Guerinot ML, Briat J-F, Curie C. 2002. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14: 1223–1233.
Wang HY, Klatte M, Jakoby M, Baumlein H, Weisshaar B, Bauer P. 2007. Iron deficiency-mediated stress regulation of four subgroup Ib BHLH genes in Arabidopsis thaliana. Planta 226: 897–908.
Weber M, Harada E, Vess C, Roepenack-Lahaye EV, Clemens S. 2004. Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant Journal 37: 269–281.
Willems G, Dräger DB, Courbot M, Gode C, Verbruggen N, Saumitou-Laprade P. 2007. The genetic basis of zinc tolerance in the metallophyte Arabidopsis halleri ssp. halleri (Brassicaceae): an analysis of quantitative trait loci. Genetics 176: 659–674.
Willems G, Frérot H, Gennen J, Salis P, Saumitou-Laprade P, Verbruggen N. 2010. Quantitative trait loci analysis of mineral element concentrations in an Arabidopsis halleri × Arabidopsis lyrata petraea F2 progeny grown on cadmium-contaminated soil. New Phytologist 187: 368–379.
Wong CKE, Cobbett CS. 2009. HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana. New Phytologist 181: 71–78.
Zhao FJ, Lombi E, Breedon T, McGrath SP. 2000. Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant, Cell & Environment 23: 507–514.
Zhi-Liang H, Bao J, Reecy J. 2008. CateGOrizer: a web-based program to batch analyze gene ontology classification categories. Online Journal of Bioinformatics 9: 108–112.