point cloud; data model; classification; segmentation; point cloud database; semantics; 3D Spatial data; nuage de points; modèle conceptuel; base de données; sémantique
Abstract :
[en] This paper proposes an interoperable model for managing high dimensional point clouds while integrating semantics. Point clouds from sensors are a direct source of information physically describing a 3D state of the recorded environment. As such, they are an exhaustive representation of the real world at every scale: 3D reality-based spatial data. Their generation is increasingly fast but processing routines and data models lack of knowledge to reason from information extraction rather than interpretation. The enhanced smart point cloud developed model allows to bring intelligence to point clouds via 3 connected meta-models while linking available knowledge and classification procedures that permits semantic injection. Interoperability drives the model adaptation to potentially many applications through specialized domain ontologies. A first prototype is implemented in Python and PostgreSQL database and allows to combine semantic and spatial concepts for basic hybrid queries on different point clouds. [fr] Cet article propose un modèle interopérable pour la gestion des nuages de points volumineux tout en intégrant la sémantique. Les nuages de points provenant des capteurs sont une source directe d'information décrivant physiquement un état 3D de l'environnement. Ils sont une représentation exhaustive du monde réel à toutes les échelles: des données spatiales 3D basées sur la réalité. Leur génération est de plus en plus rapide, mais les routines de traitement et les modèles de données manquent de connaissances pour raisonner à partir de l'extraction dinformation plutôt que de l'interprétation. Le modèle conceptuel de nuages de points intelligents développé permet d'apporter l'intelligence aux nuages de points via 3 méta-modèles connectés, tout en reliant les connaissances disponibles et les procédures de classification qui permettent l'injection sémantique. L'interopérabilité conduit l'adaptation du modèle à de nombreuses applications grâce à des ontologies de domaines spécialisés. Un premier prototype est implémenté dans la base de données Python et PostgreSQL et permet de combiner des concepts sémantiques et spatiaux pour des requêtes hybrides de base sur différents nuages de points.
Ben Hmida, H., Boochs, F., Cruz, C., Nicolle, C., 2012a. Knowledge Base Approach for 3D Objects Detection in Point Clouds Using 3D Processing and Specialists Knowledge. Int. J. Adv. Intell. Syst. 5, 1-14.
Ben Hmida, H., Cruz, C., Boochs, F., Nicolle, C., 2012b. From Unstructured 3D Point Clouds to Structured Knowledge-A Semantics Approach, in: Afzal, M.T. (Ed.), Semantics-Advances in Theories and Mathematical Models. InTech, Rijeka, p. 284. doi:10.5772/37633
Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., Çöltekin, A., 2015. Applications of 3D City Models: State of the Art Review. ISPRS Int. J. Geo-Information 4, 2842-2889. doi:10.3390/ijgi4042842
Billen, R., Zaki, C., Servières, M., Moreau, G., Hallot, P., 2012. Developing an ontology of space: Application to 3D city modeling, in: Leduc, T., Moreau, G., Billen, R. (Eds.), Usage, Usability, and Utility of 3D City Models-European COST Action TU0801. EDP Sciences, Les Ulis, France, p. 2007. doi:10.1051/3u3d/201202007
Clementini, E., Di Felice, P., 1997. Approximate topological relations. Int. J. Approx. Reason. 16, 173-204. doi:10.1016/S0888-613X(96)00127-2
Cura, R., Perret, J., Paparoditis, N., 2017. A scalable and multipurpose point cloud server (PCS) for easier and faster point cloud data management and processing. ISPRS J. Photogramm. Remote Sens. 127, 39-56. doi:10.1016/j.isprsjprs.2016.06.012
Cura, R., Perret, J., Paparoditis, N., 2016. Implicit LOD for processing, visualisation and classification in Point Cloud Servers (Computational Geometry; Computer Vision and Pattern Recognition; Software Engineering). Saint Mande. doi:10.13140/RG.2.1.1457.6400
Dobos, L., Csabai, I., Szalai-Gindl, J.M., Budavári, T., Szalay, A.S., 2014. Point cloud databases, in: Proceedings of the 26th International Conference on Scientific and Statistical Database Management (SSDBM '14). ACM Press, New York, New York, USA. doi:10.1145/2618243.2618275
Gong, J., Ke, S., 2011. 3D spatial query implementation method based on R-tree, in: 2011 International Conference on Remote Sensing, Environment and Transportation Engineering. IEEE, Nanjing, pp. 2828-2831. doi:10.1109/RSETE.2011.5964903
Gorte, B., Pfeifer, N., 2004. Structuring laser-scanned trees using 3D mathematical morphology. Int. Arch. Photogramm. Remote.
Hahmann, S., Burghardt, D., Weber, B., 2011. "80% of All Information is Geospatially Referenced " Towards a Research Framework: Using the Semantic Web for (In)Validating this Famous Geo Assertion, in: Agile. pp. 18-22.
Harvey, F., Kuhn, W., Pundt, H., Bishr, Y., Riedemann, C., 1999. Semantic interoperability: A central issue for sharing geographic information. Ann. Reg. Sci. 33, 213-232. doi:10.1007/s001680050102
Janowicz, K., Schade, S., Bröring, A., Keßler, C., Maué, P., Stasch, C., 2010. Semantic Enablement for Spatial Data Infrastructures. Trans. GIS 14, 111-129. doi:10.1111/j.1467-9671.2010.01186.x
Karim, H., Abdul Rahman, A., Boguslawski, P., Meijers, M., van Oosterom, P., 2017. The Potential of the 3D Dual Half-Edge (DHE) Data Structure for Integrated 2D-Space and Scale Modelling: A Review, in: Abdul-Rahman, A. (Ed.), Advances in 3D Geoinformation. Springer International Publishing, pp. 477-493. doi:10.1007/978-3-319-25691-7-27
Kolbe, T.H., Gröger, G., Plümer, L., 2005. CityGML: Interoperable Access to 3D City Models, in: Van Oosterom, P., Zlatanova, S., Fendel, E.M. (Eds.), Geo-Information for Disaster Management. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 883-899. doi:10.1007/3-540-27468-5-63
Kuhn, W., 2005. Geospatial Semantics: Why, of What, and How?, in: Spaccapietra, S., Zimányi, E. (Eds.), Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, pp. 1-24. doi:10.1007/11496168-1
Li, S., Dragicevic, S., Castro, F.A., Sester, M., Winter, S., Coltekin, A., Pettit, C., Jiang, B., Haworth, J., Stein, A., Cheng, T., 2015. Geospatial big data handling theory and methods: A review and research challenges. ISPRS J. Photogramm. Remote Sens. 115, 119-133. doi:10.1016/j.isprsjprs.2015.10.012
Liu, X., Wang, X., Wright, G., Cheng, J., Li, X., Liu, R., 2017. A State-of-the-Art Review on the Integration of Building Information Modeling (BIM) and Geographic Information System (GIS). ISPRS Int. J. Geo-Information 6, 53. doi:10.3390/ijgi6020053
Nonaka, lkujiro, Takeuchi, H., Umemoto, K., 1996. A theory of organizational knowledge creation. Int. J. Technol. Manag. 11. doi:10.1504/IJTM.1996.025472
Novak, M., 1997. Intelligent Environments: Spatial Aspects of the Information Revolution, P. Droege. ed. Elsevier. doi:978-0-444-82332-8
Ogden, C., Richards, I., Ranulf, S., Cassirer, E., 1923. The Meaning of Meaning. A Study of the Influence of Language upon Thought and of the Science of Symbolism, A Harvest. ed. Harcourt, Brace & World Inc., New York.
Poux, F., Hallot, P., Neuville, R., Billen, R., 2016a. SMART POINT CLOUD: DEFINITION AND REMAINING CHALLENGES. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. IV-2/W1, 119-127. doi:10.5194/isprsannals-IV-2-W1-119-2016
Poux, F., Neuville, R., Hallot, P., Billen, R., 2016b. Point clouds as an efficient multiscale layered spatial representation, in: Vincent, T., Biljecki, F. (Eds.), Eurographics Workshop on Urban Data Modelling and Visualisation. The Eurographics Association. doi:10.2312/udmv.20161417
Poux, F., Neuville, R., Hallot, P., Van Wersch, L., Luczfalvy Jancsó, A., Billen, R., 2017. DIGITAL INVESTIGATIONS OF AN ARCHAEOLOGICAL SMART POINT CLOUD: A REAL TIME WEB-BASED PLATFORM TO MANAGE THE VISUALISATION OF SEMANTICAL QUERIES. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLII-5/W1, 581-588. doi:10.5194/isprs-archives-XLII-5-W1-581-2017
Richter, R., Döllner, J., 2013. Concepts and techniques for integration, analysis and visualization of massive 3D point clouds. Comput. Environ. Urban Syst. 45, 114-124. doi:10.1016/j.compenvurbsys.2013.07.004
Ross, L., 2010. Virtual 3D City Models in Urban Land Management-Technologies and Applications. Technischen Universität Berlin.
Rusu, R.B., Marton, Z.C., Blodow, N., Dolha, M., Beetz, M., 2008. Towards 3D Point cloud based object maps for household environments. Rob. Auton. Syst. 56, 927-941. doi:10.1016/j.robot.2008.08.005
Smith, B., Varzi, A., 2000. Fiat and bona fide boundaries. Philos. Phenomenol. Res. 60, 401-420. doi:10.2307/2653492
Stadler, A., Kolbe, T.H., 2007. SPATIO-SEMANTIC COHERENCE IN THE INTEGRATION OF 3D CITY MODELS, in: A. Stein (Ed.), 5th International ISPRS Symposium on Spatial Data Quality. ISPRS, Enschede.
Tangelder, J.W.H., Veltkamp, R.C., 2007. A survey of content based 3D shape retrieval methods. Multimed. Tools Appl. 39, 441-471. doi:10.1007/s11042-007-0181-0
van Oosterom, P., Martinez-Rubi, O., Ivanova, M., Horhammer, M., Geringer, D., Ravada, S., Tijssen, T., Kodde, M., Gonvalves, R., 2015. Massive point cloud data management: Design, implementation and execution of a point cloud benchmark. Comput. Graph. 49, 92-125. doi:10.1016/j.cag.2015.01.007
Wang, J., Lindenbergh, R., Menenti, M., 2017. SigVox-A 3D feature matching algorithm for automatic street object recognition in mobile laser scanning point clouds. ISPRS J. Photogramm. Remote Sens. 128, 111-129. doi:10.1016/j.isprsjprs.2017.03.012
Xiong, X., Adan, A., Akinci, B., Huber, D., 2013. Automatic creation of semantically rich 3D building models from laser scanner data. Autom. Constr. 31, 325-337. doi:10.1016/j.autcon.2012.10.006
Zlatanova, S., Rahman, A., 2002. Trends in 3D GIS development. J. Geospatial Eng. 4, 71-80.