Heimann, K., Huerlimann, R. Microalgal Classification: Major Classes and Genera of Commercial Microalgal Species. In Handbook of Marine Microalgae, Kim, S.-K., Ed., Elsevier Inc.: Amsterdam, The Netherlands, 2015. [CrossRef]
O’Neill, E.C., Trick, M., Henrissat, B., Field, R.A. Euglena in time: Evolution, controlof central metabolic processes andmulti-domain proteins in carbohydrateand natural product biochemistry. Perspect. Sci. 2015, 6, 84-93. [CrossRef]
Yamada, K., Suzuki, H., Takeuchi, T., Kazama, Y., Mitra, S., Abe, T., Goda, K., Suzuki, K., Iwata, O. Efficient selective breeding of live oil-rich Euglena gracilis with fluorescence-activated cell sorting. Sci. Rep. 2016, 6, 26327. [CrossRef] [PubMed]
Lloyd, D., Chance, B. Electron Transport in Mitochondria Isolated from the Flagellate Polytomella caeca. Biochem. J. 1968, 107, 829-837. [CrossRef] [PubMed]
Miazek, K., Remacle, C., Richel, A., Goffin, D. Effect of Lignocellulose Related Compounds on Microalgae Growth and Product Biosynthesis: A Review. Energies 2014, 7, 4446-4481. [CrossRef]
Chen, P., Min, M., Chen, Y., Wang, L., Li, Y., Chen, Q., Wang, C., Wan, Y., Wang, X., Cheng, Y., et al. Review of the biological and engineering aspects of algae to fuels approach. Int. J. Agric. Biol. Eng. 2009, 2, 2-30. [CrossRef]
Guedes, A.C., Amaro, H.M., Malcata, F.X. Microalgae as Sources of Carotenoids. Mar. Drugs 2011, 9, 625-644. [CrossRef] [PubMed]
Christenson, L., Sims, R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol. Adv. 2011, 29, 686-702. [CrossRef] [PubMed]
Úbeda, B., Gálvez, J.Á., Michel, M., Bartual, A. Microalgae cultivation in urban wastewater: Coelastrum cf. pseudomicroporum as a novel carotenoid source and a potential microalgae harvesting tool. Bioresour. Technol. 2017, 228, 210-217. [CrossRef] [PubMed]
Ji, M.K., Yun, H.S., Hwang, B.S., Kabra, A.N., Jeon, B.H., Choi, J. Mixotrophic cultivation of Nephroselmis sp. using industrial wastewater for enhanced microalgal biomass production. Ecol. Eng. 2016, 95, 527-533. [CrossRef]
Gupta, S.K., Ansari, F.A., Shriwastav, A., Sahoo, N.K., Rawat, I., Bux, F. Dual role of Chlorella sorokiniana and Scenedesmus obliquus for comprehensive wastewater treatment and biomass production for bio-fuels. J. Clean. Prod. 2016, 115, 255-264. [CrossRef]
Edmundson, S.J., Wilkie, A.C. Landfill leachate—A water and nutrient resource for algae-based biofuels. Environ. Technol. 2013, 34, 1849-1857. [CrossRef] [PubMed]
Guo, J., Selby, K., Boxall, A.B.A. Effects of Antibiotics on the Growth and Physiology of Chlorophytes, Cyanobacteria, and a Diatom. Arch. Environ. Contam. Toxicol. 2016. [CrossRef] [PubMed]
Ma, J., Wang, P., Chen, J., Sun, Y., Che, J. Differential Response of Green Algal Species Pseudokirchneriella subcapitata, Scenedesmus quadricauda, Scenedesmus obliquus, Chlorella vulgaris and Chlorella pyrenoidosa to Six Pesticides. Pol. J. Environ. Stud. 2007, 16, 847-851.
Miazek, K., Iwanek, W., Remacle, C., Richel, A., Goffin, D. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review. Int. J. Mol. Sci. 2015, 16, 23929-23969. [CrossRef] [PubMed]
Pham, T.P., Cho, C.W., Yun, Y.S. Environmental fate and toxicity of ionic liquids: A review. Water Res. 2010, 44, 352-372. [CrossRef] [PubMed]
Grodowska, K., Parczewski, A. Organic Solvents in the Pharmaceutical Industry. Acta Poloniae Pharm. Drug Res. 2010, 67, 3-12.
Ghandi, K. A Review of Ionic Liquids, Their Limits and Applications. Green Sustain. Chem. 2014, 4, 44-53. [CrossRef]
Plechkova, N.V., Seddon, K.R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 2008, 37, 123-150. [CrossRef] [PubMed]
Orr, V.C.A., Rehmann, L. Ionic liquids for the fractionation of microalgae biomass. Curr. Opin. Green Sustain. Chem. 2016, 2, 22-27. [CrossRef]
Cuellar-Bermudez, S.P., Aguilar-Hernandez, I., Cardenas-Chavez, D.L., Ornelas-Soto, N., Romero-Ogawa, M.A., Parra-Saldivar, R. Extraction and purification of high-value metabolites from microalgae: Essential lipids, astaxanthin and phycobiliproteins. Microb. Biotechnol. 2014, 8, 190-209. [CrossRef] [PubMed]
Amde, M., Liu, J.F., Pang, L. Environmental Application, Fate, Effects, and Concerns of Ionic Liquids: A Review. Environ. Sci. Technol. 2015, 49, 12611-12627. [CrossRef] [PubMed]
Inderjit, A.C., Kakuta, H. Phytotoxicity and fate of 1, 1, 2-trichloroethylene: A laboratory study. J. Chem. Ecol. 2003, 29, 1329-1335. [CrossRef] [PubMed]
Rodriguez-Caballero, A., Ramond, J.B., Welz, P.J., Cowan, D.A., Odlare, M., Burton, S.G. Treatment of high ethanol concentration wastewater by biological sand filters: Enhanced COD removal and bacterial community dynamics. J. Environ. Manag. 2012, 109, 54-60. [CrossRef] [PubMed]
Badshah, M., Parawira, W., Mattiasson, B. Anaerobic treatment of methanol condensate from pulp mill compared with anaerobic treatment of methanol using mesophilic UASB reactors. Bioresour. Technol. 2012, 125, 318-327. [CrossRef] [PubMed]
Sibirny, V.A., Gonchar, M.V., Grabek-Lejko, D., Pavlishko, H.M., Csoregi, E., Sibirny, A.A. Photometric assay of methanol and formaldehyde in industrial waste-waters using alcohol oxidase and 3-methyl-2-benzothiazolinone hydrazine. Int. J. Environ. Anal. Chem. 2008, 88, 289-301. [CrossRef]
Esmaeili, A., Loghmani, K. Removal of Monoethylene Glycol from Gas Field Wastewater Using Aspergillus tubingensis and a New Bioreactor. Waste Biomass Valor. 2016, 7, 151-156. [CrossRef]
Bayat, M., Mehrnia, M.R., Hosseinzadeh, M., Sheikh-Sofla, R. Petrochemical wastewater treatment and reuse by MBR: A pilot study for ethylene oxide/ethylene glycol and olefin units. J. Ind. Eng. Chem. 2015, 25, 265-271. [CrossRef]
Tobiszewski, M., Tsakovski, S., Simeonov, V., Namiesnik, J. Chlorinated solvents in a petrochemical wastewater treatment plant: An assessment of their removal using self-organising maps. Chemosphere 2012, 87, 962-968. [CrossRef] [PubMed]
Enright, A.M., McHugh, S., Collins, G., O’Flaherty, V. Low-temperature anaerobic biological treatment of solvent containing pharmaceutical wastewater. Water Res. 2005, 39, 4587-4596. [CrossRef] [PubMed]
Svojitka, J., Dvorak, L., Studer, M., Straub, J.O., Fromelt, H., Wintgens, T. Performance of an anaerobic membrane bioreactor for pharmaceutical wastewater treatment. Bioresour. Technol. 2017, 229, 180-189. [CrossRef] [PubMed]
Huang, C., Yang, X.Y., Xiong, L., Guo, H.J., Luo, J., Wang, B., Zhang, H.R., Lin, X.Q., Chen, X.D. Evaluating the possibility of using acetone-butanol-ethanol (ABE) fermentation wastewater for bacterial cellulose production by Gluconacetobacter xylinus. Lett. Appl. Microbiol. 2015, 60, 491-496. [CrossRef] [PubMed]
Stepnowski, P., Blotevogel, K.H., Ganczarek, P., Fischer, U., Jastorff, B. Total recycling of chromatographic solvents—Applied management of methanol and acetonitrile waste. Resour. Conserv. Recycl. 2002, 35, 163-175. [CrossRef]
Neves, C.M.S.S., Freire, M.G., Coutinho, J.A.P. Improved recovery of ionic liquids from contaminated aqueous streams using aluminium-based salts. RSC Adv. 2012, 2, 10882-10890. [CrossRef]
Markiewicz, M., Piszora, M., Caicedo, N., Jungnickel, C., Stolte, S. Toxicity of ionic liquid cations and anions towards activated sewage sludge organisms from different sources—Consequences for biodegradation testing and wastewater treatment plant operation. Water Res. 2013, 47, 2921-2928. [CrossRef] [PubMed]
Gendaszewska, D., Liwarska-Bizukojc, E., Maton, C., Stevens, C.V. Influence of newly synthesized imidazolium ionic liquids on activated sludge process. Arch. Environ. Prot. 2015, 41, 40-48. [CrossRef]
Kilroy, A.C., Gray, N.F. The toxicity of four organic solvents commonly used in the pharmaceutical industry to activated sludge. Water Res. 1992, 26, 887-892. [CrossRef]
Cooper, G.M. Transport of Small Molecules. Chapter 12. The Cell Surface. The Cell: A Molecular Approach, 2nd ed., Sinauer Associates: Sunderland, MA, USA, 2000, ISBN 10:0-87893-106-6.
Kotzabasis, K., Hatziathanasiou, A., Bengoa-Ruigomez, M.V., Kentouri, M., Divanach, P. Methanol as alternative carbon source for quicker efficient production of the microalgae Chlorella minutissima: Role of the concentration and frequence of administration. J. Biotechnol. 1999, 70, 357-362. [CrossRef]
Choi, W.Y., Oh, S.H., Seo, Y.C., Kim, G.B., Kang, D.H., Lee, S.Y., Jung, K.H., Cho, J.S., Ahn, J.H., Choi, G.P., et al. Effects of methanol on cell growth and lipid production from mixotrophic cultivation of Chlorella sp. Biotechnol. Bioprocess Eng. 2011, 16, 946-955. [CrossRef]
Stepanov, S.S., Zolotareva, E.K. Methanol-induced stimulation of growth, intracellular amino acids, and protein content in Chlamydomonas reinhardtii. J. Appl. Phycol. 2015, 27, 1509-1516. [CrossRef]
Hunt, R.W., Chinnasamy, S., Bhatnagar, A., Das, K.C. Effect of Biochemical Stimulants on Biomass Productivity and Metabolite Content of the Microalga, Chlorella sorokiniana. Appl. Biochem. Biotechnol. 2010, 162, 2400-2414. [CrossRef] [PubMed]
Navakoudis, E., Ioannidis, N.E., Dörnemann, D., Kotzabasis, K. Changes in the LHCII-mediated energy utilization and dissipation adjust the methanol-induced biomass increase. Biochim. Biophys. Acta 2007, 1767, 948-955. [CrossRef] [PubMed]
Nonomura, A.M., Benson, A.A. The path of carbon in photosynthesis: Improved crop yields with methanol. Proc. Natl. Acad. Sci. USA 1992, 89, 9794-9798. [CrossRef] [PubMed]
El Jay, A. Toxic Effects of Organic Solvents on the Growth of Chlorella vulgaris and Selenastrum capricornutum. Bull. Environ. Contam. Toxicol. 1996, 57, 191-198. [CrossRef] [PubMed]
Costa, S.P.F., Pinto, P.C.A.G., Saraiva, M.L.M.F.S., Rocha, F.R.P., Santos, J.R.P., Monteiro, R.T.R. The aquatic impact of ionic liquids on freshwater organisms. Chemosphere 2015, 139, 288-294. [CrossRef] [PubMed]
Ma, J., Chen, J. How to accurately assay the algal toxicity of pesticides with low water solubility. Environ. Pollut. 2005, 136, 267-273. [CrossRef] [PubMed]
Okumura, Y., Koyama, J., Takaku, H., Satoh, H. Influence of Organic Solvents on the Growth of Marine Microalgae. Arch. Environ. Contam. Toxicol. 2001, 41, 123-128. [CrossRef] [PubMed]
Yoval-Sánchez, B., Jasso-Chávez, R., Lira-Silva, E., Moreno-Sánchez, R., Rodríguez-Zavala, J.S. Novel mitochondrial alcohol metabolizing enzymes of Euglena gracilis. J. Bioenerg. Biomembr. 2011, 43, 519-530. [CrossRef] [PubMed]
Ono, K., Kawanaka, Y., Izumi, Y., Inui, H., Miyatake, K., Kitaoka, S., Nakano, Y. Mitochondrial Alcohol Dehydrogenase from Ethanol-Grown Euglena gracilis. J. Biochem. 1995, 117, 1178-1182. [CrossRef] [PubMed]
Fujita, T., Aoyagi, H., Ogbonna, J.C., Tanaka, H. Effect of mixed organic substrate on α-tocopherol production by Euglena gracilis in photoheterotrophic culture. Appl. Microbiol. Biotechnol. 2008, 79, 371-378. [CrossRef] [PubMed]
Mokrosnop, V.M., Polishchuk, A.V., Zolotareva, E.K. Accumulation of α-tocopherol and β-carotene in Euglena gracilis Cells under Autotrophic and Mixotrophic Culture Conditions. Appl. Biochem. Microbiol. 2016, 52, 216-221. [CrossRef]
Afiukwa, C.A., Ogbonna, J.C. Effects of mixed substrates on growth and vitamin production by Euglena gracilis. Afr. J. Biotechnol. 2007, 6, 2612-2615.
Bezerra, R.P., Matsudo, M.C., Pérez-Mora, L.S., Sato, S., Carvalho, J.C.M. Ethanol effect on batch and fed-batch Arthrospira platensis growth. J. Ind. Microbiol. Biotechnol. 2014, 41, 687-692. [CrossRef] [PubMed]
Matsudo, M.C., Sousa, T.F., Pérez-Mora, L.S., Bezerra, R.P., Sato, S., Carvalho, J.C.M. Ethanol as complementary carbon source in Scenedesmus obliquus cultivation. J. Chem. Technol. Biotechnol. 2016. [CrossRef]
Samkhaniyani, F., Najafpour, G.D., Ardestani, F. Evaluation of effective nutritional parameters for Scenedesmus sp. microalgae culturing in a photobioreactor for biodiesel production. Int. J. Environ. Sci. Technol. 2017. [CrossRef]
Wu, C., Wang, W., Yue, L., Yang, Z., Fu, Q., Ye, Q. Enhancement effect of ethanol on lipid and fatty acid accumulation and composition of Scenedesmus sp. Bioresour. Technol. 2013, 140, 120-125. [CrossRef] [PubMed]
Fang, X., Wei, C., Zhao-Ling, C., Fan, O. Effects of organic carbon sources on cell growth and eicosapentaenoic acid content of Nannochloropsis sp. J. Appl. Phycol. 2004, 16, 499-503. [CrossRef]
Wang, Y., Chen, T., Qin, S. Differential fatty acid profiles of Chlorella kessleri grown with organic materials. J. Chem. Technol. Biotechnol. 2013, 88, 651-657. [CrossRef]
Tadros, M.G., Philips, J., Patel, H., Pandiripally, V. Differential Response of Green Algal Species to Solvents. Bull. Environ. Contam. Toxicol. 1994, 52, 333-337. [CrossRef] [PubMed]
Tadros, M.G., Philips, J., Patel, H., Pandiripally, V. Differential Response of Marine Diatoms to Solvents. Bull. Environ. Contam. Toxicol. 1995, 54, 924-929. [CrossRef] [PubMed]
Wardas, M., Wardas, W., Mazurek, U., Lechotycka, E. The effect of some organic solvents on the growth of Chlorella algae, strain 366. Oceanologia 1983, 17, 21-28.
Rodrıguez-Zavala, J.S., Ortiz-Cruz, M.A., Mendoza-Hernandez, G., Moreno-Sanchez, R. Increased synthesis of a-tocopherol, paramylon and tyrosine by Euglena gracilis under conditions of high biomass production. J. Appl. Microbiol. 2010, 109, 2160-2172. [CrossRef] [PubMed]
De Swaaf, M.E., Pronk, J.T., Sijtsma, L. Fed-batch cultivation of the docosahexaenoic-acid-producing marine alga Crypthecodinium cohnii on ethanol. Appl. Microbiol. Biotechnol. 2003, 61, 40-43. [CrossRef] [PubMed]
Atteia, A., van Lis, R., Ramirez, J., Gonzalez-Halphen, D. Polytomella spp. growth on ethanol. Extracellular pH affects the accumulation of mitochondrial cytochrome c550. Eur. J. Biochem. 2000, 267, 2850-2858. [CrossRef] [PubMed]
Andemichael, H., Lee, J.W. Toxicological study of biofuel ethanol with blue green alga Spirulina platensis. Algal Res. 2016, 18, 110-115. [CrossRef]
Qiao, J., Wang, J., Chen, L., Tian, X., Huang, S., Ren, X., Zhang, W. Quantitative iTRAQ LC-MS/MS Proteomics Reveals Metabolic Responses to Biofuel Ethanol in Cyanobacterial Synechocystis sp. PCC 6803. J. Proteome Res. 2012, 11, 5286-5300. [CrossRef] [PubMed]
Bosma, R., Miazek, K., Willemsen, S.M., Vermue, M.H., Wijffels, R.H. Growth Inhibition of Monodus subterraneus by Free Fatty Acids. Biotechnol. Bioeng. 2008, 101, 1108-1114. [CrossRef] [PubMed]
Kämäräinen, J., Knoop, H., Stanford, N.J., Guerrero, F., Akhtar, M.K., Aro, E.M., Steuer, R., Jones, P.R. Physiological tolerance and stoichiometric potential of cyanobacteria for hydrocarbon fuel production. J. Biotechnol. 2012, 162, 67-74. [CrossRef] [PubMed]
Leon, R., Garbayo, I., Hernandez, R., Vigara, J., Vilchez, C. Organic solvent toxicity in photoautotrophic unicellular microorganisms. Enzyme Microb. Technol. 2001, 29, 173-180. [CrossRef]
Cho, C.W., Pham, T.P.T., Kim, S., Kim, Y.R., Jeon, Y.C., Yun, Y.S. Toxicity assessment of common organic solvents using a biosensor based on algal photosynthetic activity measurement. J. Appl. Phycol. 2009, 21, 683-689. [CrossRef]
Tsai, K.P., Chen, C.Y. An algal toxicity database of organic toxicants derived by a closed-system technique. Environ. Toxicol. Chem. 2007, 26, 1931-1939. [CrossRef] [PubMed]
Aruoja, V., Moosus, M., Kahru, A., Sihtmae, M., Maran, U. Measurement of baseline toxicity and QSAR analysis of 50 non-polar and 58 polar narcotic chemicals for the alga Pseudokirchneriella subcapitata. Chemosphere 2014, 96, 23-32. [CrossRef] [PubMed]
Kohler, A., Hellweg, S., Escher, B., Hungerbuhler, K. Organic pollutant removal versus toxicity reduction in industrial wastewater treatment: The example of wastewater from fluorescent whitening agent production. Environ. Sci. Technol. 2006, 40, 3395-3401. [CrossRef] [PubMed]
Hu, L.X., Tian, F., Martin, F.L., Ying, G.G. Biochemical alterations in duckweed and algae induced by carrier solvents: Selection of an appropriate solvent in toxicity testing. Environ. Toxicol. Chem. 2017. [CrossRef] [PubMed]
Cho, C.W., Jeon, Y.C., Pham, T.P.T., Vijayaraghavan, K., Yun, Y.S. The ecotoxicity of ionic liquids and traditional organic solvents on microalga Selenastrum capricornutum. Ecotoxicol. Environ. Saf. 2008, 71, 166-171. [CrossRef] [PubMed]
Hughes, J.S., Vilkas, A.G. Toxicity of N, N-Dimethylformamide Used as a Solvent in Toxicity Tests with the Green Alga, Selenastrum capricornutum. Bull. Environ. Contam. Toxicol. 1983, 31, 98-104. [CrossRef] [PubMed]
Stratton, G.W. Toxic Effects of Organic Solvents on the Growth of Blue-Green Algae. Bull. Environ. Contain. Toxicol. 1987, 38, 1012-1019. [CrossRef]
McEvoy, E., Wright, P.C., Bustard, M.T. The effect of high concentration isopropanol on the growth of a solvent-tolerant strain of Chlorella vulgaris. Enzyme Microb. Technol. 2004, 35, 140-146. [CrossRef]
Wise, D.L. Carbon Nutrition and Metabolism of Polytomella caeca. J. Protozool. 1959, 6, 19-23. [CrossRef]
Pillard, D.A., DuFresne, D.L. Toxicity of Formulated Glycol Deicers and Ethylene and Propylene Glycol to Lactuca sativa, Lolium perenne, Selenastrum capricornutum, and Lemna minor. Arch. Environ. Contam. Toxicol. 1999, 37, 29-35. [CrossRef] [PubMed]
Devillers, J., Chezeau, A., Thybaud, E., Poulsen, V., Porcher, J.M., Graff, L., Vasseur, P., Mouchet, F., Ferrier, V., Quiniou, F. Ecotoxicity of ethylene glycol monobutyl ether and its acetate. Toxicol. Mech. Methods 2002, 12, 255-263. [CrossRef] [PubMed]
Kishi, M., Kawai, M., Toda, T. Heterotrophic utilization of ethylene glycol and propylene glycol by Chlorella protothecoides. Algal Res. 2015, 11, 428-434. [CrossRef]
Canadian Council of Ministers of the Environment. Canadian water quality guidelines for the protection of aquatic life: 1, 4-Dioxane. Adapted from Bringmann G and Kuhn R. Limiting values of the harmful action of water endangering substances on bacteria (Pseudomonas putida) and green algae (Scenedesmus quadricauda) in the cell multiplication inhibition test. Z. Wasser Abwasser Forsch. 1977b, 10, 87-98.
Hook, I.L., Ryan, S., Sheridan, H. Biotransformation of aliphatic and aromatic ketones, including several monoterpenoid ketones and their derivatives by five species of marine microalgae. Phytochemistry 2003, 63, 31-36. [CrossRef]
Wu, S., Zhang, H., Yu, X., Qiu, L. Toxicological Responses of Chlorella vulgaris to Dichloromethane and Dichloroethane. Environ. Eng. Sci. 2014, 31, 9-17. [CrossRef] [PubMed]
Ando, T., Otsuka, S., Nishiyama, M., Senoo, K., Watanabe, M.M., Matsumoto, S. Toxic Effects of Dichloromethane and Trichloroethylene on the Growth of Planktonic Green Algae, Chlorella vulgaris NIES227, Selenastrum capricornutum NIES35, and Volvulina steinii NIES 545. Microbes Environ. 2003, 18, 43-46. [CrossRef]
Brack, W., Rottler, H. Toxicity Testing of Highly Volatile—A New Assay Chemicals with Green Algae. Environ. Sci. Pollut. Res. 1994, 4, 223-228. [CrossRef] [PubMed]
Bacsi, I., Torok, T., B-Beres, V., Torok, P., Tothmeresz, B., Nagy, A.S., Vasas, G. Laboratory and microcosm experiments testing the toxicity of chlorinated hydrocarbons on a cyanobacterium strain (Synechococcus PCC 6301) and on natural phytoplankton assemblages. Hydrobiologia 2013, 710, 189-203. [CrossRef]
Lukavsky, J., Furnadzhieva, S., Dittrt, F. Toxicity of Trichloroethylene (TCE) on Some Algae and Cyanobacteria. Bull. Environ. Contam. Toxicol. 2011, 86, 226-231. [CrossRef] [PubMed]
Zhang, S., Lin, D., Wu, F. The effect of natural organic matter on bioaccumulation and toxicity of chlorobenzenes to green algae. J. Hazard. Mater. 2016, 311, 186-193. [CrossRef] [PubMed]
Sicko-Goad, L., Lazinsky, D., Hall, J., Simmons, M.S. Effects of Chlorinated Benzenes on Diatom Fatty Acid Composition and Quantitative Morphology. I. 1, 2, 4-Trichlorobenzene. Arch. Environ. Contam. Toxicol. 1989, 18, 629-637. [CrossRef] [PubMed]
Sicko-Goad, L., Andresen, N.A. Effect of Lipid Composition on the Toxicity of Trichlorobenzene Isomers to Diatoms. I. Short-Term Effects of 1, 3, 5-Trichlorobenzene. Arch. Environ. Contam. Toxicol. 1993, 24, 236-242. [CrossRef]
Dunstan, W.M., Atkinson, L.P., Natoli, J. Stimulation and Inhibition of Phytoplankton Growth by Low Molecular Weight Hydrocarbons. Mar. Biol. 1975, 31, 305-310. [CrossRef]
Agrawal Manisha, S.C. Growth, Survival and Reproduction in Chlorella vulgaris and C. variegata with Respect to Culture Age and under Different Chemical Factors. Folia Microbiol. 2007, 52, 399-406. [CrossRef]
Gupta, S., Agrawal, S.C. Survival of diatoms Synedra, Gomphonema and Fragilaria species in nature and in presence of different chemical and physical stress factors. J. Algal Biomass Utlin. 2011, 2, 52-76.
Ceballos-Laita, L., Calvo, L., Bes, M.T., Fillat, M.F., Peleato, M.L. Effects of benzene and several pharmaceuticals on the growth and microcystin production in Microcystis aeruginosa PCC 7806. Limnetica 2015, 34, 237-246.
Masten, L.W., Boeri, R.L., Walker, J.D. Strategies employed to determine the acute aquatic toxicity of ethyl benzene, a highly volatile, poorly water-soluble chemical. Ecotoxicol. Environ. Saf. 1994, 27, 335-348. [CrossRef] [PubMed]
Herman, D.C., Inniss, W.E., Mayfield, C.I. Toxicity Testing of Aromatic Hydrocarbons Utilizing a Measure of Their Impact on the Membrane Integrity of the Green Alga Selenastrum capricornutum. Bull. Environ. Contam. Toxicol. 1991, 47, 874-881. [CrossRef] [PubMed]
Liu, Z., Cui, F., Ma, H., Fan, Z., Zhao, Z., Hou, Z., Liu, D., Jia, X. The interaction between nitrobenzene and Microcystis aeruginosa and its potential to impact water quality. Chemosphere 2013, 92, 1201-1206. [CrossRef] [PubMed]
Liu, Z., Cui, F., Ma, H., Fan, Z., Zhao, Z. The role of nitrobenzene on the yield of trihalomethane formation potential in aqueous solutions with Microcystis aeruginosa. Water Res. 2011, 45, 6489-6495. [CrossRef] [PubMed]
Christensen, E.R., Kusk, K.O., Nyholm, N. Dose-response regressions for algal growth and similar continuous endpoints: Calculation of effective concentrations. Environ. Toxicol. Chem. 2009, 28, 826-835. [CrossRef] [PubMed]
Singh, B.B., Chandra, R. Comparative Chronic Toxicity of Pyridine, α-Picoline, and β-Picoline to Lemna minor L. and Chlorella vulgaris B. Bull. Environ. Contam. Toxicol. 2005, 75, 482-489. [CrossRef] [PubMed]
Semple, K.T., Cain, R.B., Schmidt, S. Biodegradation of aromatic compounds by microalgae. FEMS Microbiol. Lett. 1999, 170, 291-300. [CrossRef]
Semple, K.T. Biodegradation of phenols by a eukaryotic alga. Res. Microbial. 1997, 148, 365-367. [CrossRef]
Papazi, A., Assimakopoulos, K., Kotzabasis, K. Bioenergetic Strategy for the Biodegradation of p-Cresol by the Unicellular Green Alga Scenedesmus obliquus. PLoS ONE 2012, 12, e51852. [CrossRef] [PubMed]
Papazi, A., Kotzabasis, K. Inductive and resonance effects of substituents adjust the microalgal biodegradation of toxical phenolic compounds. J. Biotechnol. 2008, 135, 366-373. [CrossRef] [PubMed]
Pham, T.P.T., Cho, C.W., Min, J., Yun, Y.S. Alkyl-Chain Length Effects of Imidazolium and Pyridinium Ionic Liquids on Photosynthetic Response of Pseudokirchneriella subcapitata. J. Biosci. Bioeng. 2008, 105, 425-428. [CrossRef] [PubMed]
Pham, T.P.T., Cho, C.W., Yun, Y.S. Structural effects of ionic liquids on microalgal growth inhibition and microbial degradation. Environ. Sci. Pollut. Res. 2016, 23, 4294-4300. [CrossRef] [PubMed]
Pretti, C., Chiappe, C., Baldetti, I., Brunini, S., Monni, G., Intorre, L. Acute toxicity of ionic liquids for three freshwater organisms: Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Ecotoxicol. Environ. Saf. 2009, 72, 1170-1176. [CrossRef] [PubMed]
Tsarpali, V., Harbi, K., Dailianis, S. Physiological response of the green microalgae Dunaliella tertiolecta against imidazolium ionic liquids [bmim] [BF4] and/or [omim] [BF4]: The role of salinity on the observed effects. J. Appl. Phycol. 2016, 28, 979-990. [CrossRef]
Tsarpali, V., Dailianis, S. Toxicity of two imidazolium ionic liquids, [bmim] [BF4] and [omim] [BF4], to standard aquatic test organisms: Role of acetone in the induced toxicity. Ecotoxicol. Environ. Saf. 2015, 117, 62-71. [CrossRef] [PubMed]
Ma, J.M., Cai, L.L., Zhang, B.J., Hu, L.W., Li, X.Y., Wang, J.J. Acute toxicity and effects of 1-alkyl-3-methylimidazolium bromide ionic liquids on green algae. Ecotoxicol. Environ. Saf. 2010, 73, 1465-1469. [CrossRef] [PubMed]
Wells, A.S., Coombe, V.T. On the Freshwater Ecotoxicity and Biodegradation Properties of Some Common Ionic Liquids. Org. Process Res. Dev. 2006, 10, 794-798. [CrossRef]
Ventura, S.P.M., Gurbisz, M., Ghavre, M., Ferreira, F.M.M., Gonçalves, F., Beadham, I., Quilty, B., Coutinho, J.A.P., Gathergood, N. Imidazolium and Pyridinium Ionic Liquids from Mandelic Acid Derivatives: Synthesis and Bacteria and Algae Toxicity Evaluation. ACS Sustain. Chem. Eng. 2013, 1, 393-402. [CrossRef]
Cho, C.W., Pham, T.P.T., Jeon, Y.C., Yun, Y.S. Influence of anions on the toxic effects of ionic liquids to a phytoplankton Selenastrum capricornutum. Green Chem. 2008, 10, 67-72. [CrossRef]
Stolte, S., Matzke, M., Arning, J., Boschen, A., Pitner, W.R., Welz-Biermann, U., Jastorff, B., Ranke, J. Effects of different head groups and functionalised side chains on the aquatic toxicity of ionic liquids. Green Chem. 2007, 9, 1170-1179. [CrossRef]
Stolte, S., Schulz, T., Cho, C.W., Arning, J., Strassner, T. Synthesis, Toxicity, and Biodegradation of Tunable Aryl Alkyl Ionic Liquids (TAAILs). ACS Sustain. Chem. Eng. 2013, 1, 410-418. [CrossRef]
Samori, C., Campisi, T., Fagnoni, M., Galletti, P., Pasteris, A., Pezzolesi, L., Protti, S., Ravelli, D., Tagliavini, E. Pyrrolidinium-based Ionic Liquids: Aquatic Ecotoxicity, Biodegradability, and Algal Subinhibitory Stimulation. ACS Sustain. Chem. Eng. 2015, 3, 1860-1865. [CrossRef]
Chen, H., Zou, Y., Zhang, L., Wen, Y., Liu, W. Enantioselective toxicities of chiral ionic liquids 1-alkyl-3-methylimidazolium lactate to aquatic algae. Aquat. Toxicol. 2014, 154, 114-120. [CrossRef] [PubMed]
Liu, H., Zhang, X., Chen, C., Du, S., Dong, Y. Effects of imidazolium chloride ionic liquids and their toxicity to Scenedesmus obliquus. Ecotoxicol. Environ. Saf. 2015, 122, 83-90. [CrossRef] [PubMed]
Kulacki, K.J., Lamberti, G.A. Toxicity of imidazolium ionic liquids to freshwater algae. Green Chem. 2008, 10, 104-110. [CrossRef]
Latała, A., Nedzia, M., Stepnowski, P. Toxicity of imidazolium ionic liquids towards algae. Influence of salinity variations. Green Chem. 2010, 12, 60-64. [CrossRef]
Samori, C., Sciutto, G., Pezzolesi, L., Galletti, P., Guerrini, F., Mazzeo, R., Pistocchi, R., Prati, S., Tagliavini, E. Effects of Imidazolium Ionic Liquids on Growth, Photosynthetic Efficiency, and Cellular Components of the Diatoms Skeletonema marinoi and Phaeodactylum tricornutum. Chem. Res. Toxicol. 2011, 24, 392-401. [CrossRef] [PubMed]
Yoo, B., Jing, B., Jones, S.E., Lamberti, G.A., Zhu, Y., Shah, J.K., Maginn, E.J. Molecular mechanisms of ionic liquid cytotoxicity probed by an integrated experimental and computational approach. Sci. Rep. 2016, 6, 19889. [CrossRef] [PubMed]
Deng, X.Y., Gao, K., Pei, F., Wang, C.H., Cao, K.W. Effects of a functionalized ionic liquid on the growth and antioxidant enzymes of Synechococcus sp. PCC 7942. Afr. J. Microbiol. Res. 2013, 29, 3824-3830.
Deng, X.Y., Cheng, J., Hu, X.L., Gao, K., Wang, C.H. Physiological and biochemical responses of a marine diatom Phaeodactylum tricornutum exposed to 1-octyl-3-methylimidazolium bromide. Aquat. Biol. 2015, 24, 109-115. [CrossRef]
Deng, X.Y., Hu, X.L., Cheng, J., Ma, Z.X., Gao, K. Growth inhibition and oxidative stress induced by 1-octyl-3-methylimidazolium bromide on the marine diatom Skeletonema costatum. Ecotoxicol. Environ. Saf. 2016, 132, 170-177. [CrossRef] [PubMed]
Deng, Y., Beadham, I., Wu, J., Chen, X.D., Hu, L., Gu, J. Chronic effects of the ionic liquid [C4mim] [Cl] towards the microalga Scenedesmus quadricauda. Environ. Pollut. 2015, 204, 248-255. [CrossRef] [PubMed]
Yang, F., Xiang, W., Sun, X., Wu, H., Li, T., Long, L. A Novel Lipid Extraction Method fromWet Microalga Picochlorum sp. at Room Temperature. Mar. Drugs 2014, 12, 1258-1270. [CrossRef] [PubMed]
Hejazi, M.A., Kleinegris, D., Wijffels, R.H. Mechanism of extraction of beta-carotene from microalga Dunaliellea salina in two-phase bioreactors. Biotechnol. Bioeng. 2004, 88, 593-600. [CrossRef] [PubMed]
Ramachandra, T.V., Mahapatra, D.M., Karthick, B. Milking Diatoms for Sustainable Energy: Biochemical Engineering versus Gasoline-Secreting Diatom Solar Panels. Ind. Eng. Chem. Res. 2009, 48, 8769-8788. [CrossRef]
Vinayak, V., Manoylov, K.M., Gateau, H., Blanckaert, V., Hérault, J., Pencréac’h, G., Marchand, J., Gordon, R., Schoefs, B. Diatom Milking: A Review and New Approaches. Mar. Drugs 2015, 13, 2629-2665. [CrossRef] [PubMed]
Mojaat, M., Foucault, A., Pruvost, J., Legrand, J. Optimal selection of organic solvents for biocompatible extraction of B-carotene from Dunaliella salina. J. Biotechnol. 2008, 133, 433-441. [CrossRef] [PubMed]
Zhang, F., Cheng, L.H., Xu, X.H., Zhang, L., Chen, H.L. Screening of biocompatible organic solvents for enhancement of lipid milking from Nannochloropsis sp. Process Biochem. 2011, 46, 1934-1941. [CrossRef]
Nezammahalleh, H., Nosrati, M., Ghanati, F., Shojaosadati, S.A. Exergy-based screening of biocompatible solvents for in situ lipid extraction from Chlorella vulgaris. J. Appl. Phycol. 2017. [CrossRef]
Atta, M., Bukhari, A., Idris, A. Enhanced lipid selective extraction from Chlorella vulgaris without cell sacrifice. Algal Res. 2016, 20, 7-15. [CrossRef]
Kleinegris, D.M.M., van Es, M.A., Janssen, M., Brandenburg, W.A., Wijffels, R.H. Phase toxicity of dodecane on the microalga Dunaliella salina. J. Appl. Phycol. 2011, 23, 949-958. [CrossRef] [PubMed]
Griehl, C., Kleinert, C., Griehl, C., Bieler, S. Design of a continuous milking bioreactor for non-destructive hydrocarbon extraction from Botryococcus braunii. J. Appl. Phycol. 2015, 27, 1833-1843. [CrossRef]
Moheimani, N.R., Cord-Ruwisch, R., Raes, E., Borowitzka, M.A. Non-destructive oil extraction from Botryococcus braunii (Chlorophyta). J. Appl. Phycol. 2013, 25, 1653-1661. [CrossRef]
Hidalgo, P., Ciudad, G., Navia, R. Evaluation of different solvent mixtures in esterifiable lipids extraction from microalgae Botryococcus braunii for biodiesel production. Bioresour. Technol. 2016, 201, 360-364. [CrossRef] [PubMed]
Anthony, R., Stuart, B. Solvent extraction and characterization of neutral lipids in Oocystis sp. Front. Energy Res. 2015, 2, 64. [CrossRef]
Olkiewicz, M., Caporgno, M.P., Font, J., Legrand, J., Lepine, O., Plechkova, N.V., Pruvost, J., Seddond, K.R., Bengoa, C. A novel recovery process for lipids from microalgae for biodiesel production using a hydrated phosphonium ionic liquid. Green Chem. 2015, 17, 2813-2824. [CrossRef]
Bi, Z., He, B.B., McDonald, A.G. Biodiesel Production from Green Microalgae Schizochytrium limacinum via in Situ Transesterification. Energy Fuels 2015, 29, 5018-5027. [CrossRef]
Desai, R.K., Streefland, M., Wijffels, R.H., Eppink, M.H.M. Novel astaxanthin extraction from Haematococcus pluvialis using cell permeabilising ionic liquids. Green Chem. 2016, 18, 1261-1267. [CrossRef]
Yap, B.H.J., Crawford, S.A., Dumsday, G.J., Scales, P.J., Martin, G.J.O. A mechanistic study of algal cell disruption and its effect on lipid recovery by solvent extraction. Algal Res. 2014, 5, 112-120. [CrossRef]
Choi, W.Y., Lee, H.Y. Effective production of bioenergy from marine Chlorella sp. by high-pressure homogenization. Biotechnol. Biotechnol. Equip. 2016, 30, 81-89. [CrossRef]
Doucha, J., Lívanský, K. Influence of processing parameters on disintegration of Chlorella cells in various types of homogenizers. Appl. Microbiol. Biotechnol. 2008, 81, 431-440. [CrossRef] [PubMed]
Cho, S.C., Choi, W.Y., Oh, S.H., Lee, C.G., Seo, Y.C., Kim, J.S., Song, C.H., Kim, G.V., Lee, S.Y., Kang, D.H., et al. Enhancement of Lipid Extraction from Marine Microalga, Scenedesmus Associated with High-Pressure Homogenization Process. J. Biomed. Biotechnol. 2012, 2012, 359432. [CrossRef] [PubMed]
Ibanez, E., Herrero, M., Mendiola, J.A., Castro-Puyana, M. Extraction and Characterization of Bioactive Compounds with Health Benefits from Marine Resources: Macro and Micro Algae, Cyanobacteria, and Invertebrates. In Marine Bioactive Compounds: Sources, Characterization and Applications, Hayes, M., Ed., Springer Science+Business Media, LLC: New York, NY, USA, 2012, Chapter 2.
Herrero, M., Ibanez, E. Green processes and sustainability: An overview on the extraction of high added-value products from seaweeds and microalgae. J. Supercrit. Fluids 2015, 96, 211-216. [CrossRef]
Pico, Y. Ultrasound-assisted extraction for food and environmental samples. Trends Anal. Chem. 2013, 43, 84-99. [CrossRef]
Ma, Y.A., Cheng, Y.M., Huang, J.W., Jen, J.F., Huang, Y.S., Yu, C.C. Effects of ultrasonic and microwave pretreatments on lipid extraction of microalgae. Bioprocess Biosyst. Eng. 2014, 37, 1543-1549. [CrossRef] [PubMed]
Pasquet, V., Chérouvrier, J.R., Farhat, F., Thiéry, V., Piot, J.M., Bérard, J.B., Kaas, R., Serive, B., Patrice, T., Cadoret, J.P., et al. Study on the microalgal pigments extraction process: Performance of microwave assisted extraction. Process Biochem. 2011, 46, 59-67. [CrossRef]
Plaza, M., Santoyo, S., Jaime, L., Avalo, B., Cifuentes, A., Reglero, G., Garcia-Blairsy Reina, G., Senorans, F.J., Ibanez, E. Comprehensive characterization of the functional activities of pressurized liquid and ultrasound-assisted extracts from Chlorella vulgaris. LWT Food Sci. Technol. 2012, 46, 245-253. [CrossRef]
Tatke, P., Jaiswal, Y. An Overview of Microwave Assisted Extraction and Its Applications in Herbal Drug Research. Res. J. Med. Plants 2011, 5, 21-31. [CrossRef]
Veggi, P.C., Martinez, J., Meireles, M.A.A. Fundamentals of Microwave Extraction. In Microwave-Assisted Extraction for Bioactive Compounds. Theory and Practice, Chemat, F., Cravotto, G., Eds., Springer Science+Business Media: New York, NY, USA, 2013, Chapter 2.
Lin, C.Y., Lin, B.Y. Fatty Acid Characteristics of Isochrysis galbana Lipids Extracted Using a Microwave-Assisted Method. Energies 2015, 8, 1154-1165. [CrossRef]
Pan, J., Muppaneni, T., Sun, Y., Reddy, H.K., Fu, J., Lu, X., Deng, S. Microwave-assisted extraction of lipids from microalgae using an ionic liquid solvent [BMIM] [HSO4]. Fuel 2016, 178, 49-55. [CrossRef]
Gilbert-Lopez, B., Barranco, A., Herrero, M., Cifuentes, A., Ibanez, E. Development of new green processes for the recovery of bioactives from Phaeodactylum tricornutum. Food Res. Int. 2016. [CrossRef]
Capuzzo, A., Maffei, M.E., Occhipinti, A. Supercritical Fluid Extraction of Plant Flavors and Fragrances. Molecules 2013, 18, 7194-7238. [CrossRef] [PubMed]
Uquiche, E., Antilaf, I., Millao, S. Enhancement of pigment extraction from B. braunii pretreated using CO2 rapid depressurization. Braz. J. Microbiol. 2016, 47, 497-505. [CrossRef] [PubMed]
Cardoso, L.C., Serrano, C.M., Rodríguez, M.R., Martínez de la Ossa, E.J., Lubián, L.M. Extraction of Carotenoids and Fatty Acids from Microalgae Using Supercritical Technology. Am. J. Anal Chem. 2012, 3, 877-883. [CrossRef]
Reyes, F.A., Mendiola, J.A., Ibanez, E., del Valle, J.M. Astaxanthin extraction from Haematococcus pluvialis using CO2-expanded ethanol. J. Supercrit. Fluids 2014, 92, 75-83. [CrossRef]
Ansari, F.A., Shriwastav, A., Gupta, S.K., Rawat, I., Bux, F. Exploration of Microalgae Biorefinery by Optimizing Sequential Extraction of Major Metabolites from Scenedesmus obliquus. Ind. Eng. Chem. Res. 2017, 56, 3407-3412. [CrossRef]
Bozhkov, A.I., Menzyanova, N.G. Influence of ethanol on metabolism of algae. Metabolism of nucleic acids and protein in cells of Dunaliella viridis Teod. Int. J. Algae 2002, 4, 65-74. [CrossRef]
Menzyanova, N.G., Bozhkov, A.I. Influence of ethanol on metabolism of algae. Growth dynamics, content of nucleic acids, proteins, and lipids in Chlorella vulgaris Beijer and Spirulina platensis (Nordst.) Geitl. Cells. Int. J. Algae 2003, 5, 64-73. [CrossRef]
Menzyanova, N.G., Bozhkov, A.I., Sotnik, N.N. Influence of ethanol on the growth dynamics and metabolism of triacylglycerides and B-carotene in Dunaliella viridis Teod. Int. J. Algae 2002, 4, 99-111. [CrossRef]
Masojidek, J., Papacek, S., Sergejevova, M., Jirka, V., Cerveny, J., Kunc, J., Korecko, J., Verbovikova, O., Kopecky, J., Stys, D., et al. A closed solar photobioreactor for cultivation of microalgae under supra-high irradiance: Basic design and performance. J. Appl. Phycol. 2003, 15, 239-248. [CrossRef]
Abdel-Raouf, N., Al-Homaidan, A.A., Ibraheem, I.B.M. Microalgae and wastewater treatment. Saudi J. Biol. Sci. 2012, 19, 257-275. [CrossRef] [PubMed]
Jerez, C.G., Navarro, E., Malpartida, I., Rico, R.M., Masojidek, J., Abdala, R., Figueroa, F.L. Hydrodynamics and photosynthesis performance of Chlorella fusca (Chlorophyta) grown in a thin-layer cascade (TLC) system. Aquat. Biol. 2014, 22, 111-122. [CrossRef]
Bumbak, F., Cook, S., Zachleder, V., Hauser, S., Kovar, K. Best practices in heterotrophic high-cell-density microalgal processes: Achievements, potential and possible limitations. Appl. Microbiol. Biotechnol. 2011, 91, 31-46. [CrossRef] [PubMed]
Zhu, Z., Luan, G., Tan, X., Zhang, H., Lu, X. Rescuing ethanol photosynthetic production of cyanobacteria in non-sterilized outdoor cultivations with a bicarbonate-based pH-rising strategy. Biotechnol. Biofuels 2017, 10, 93. [CrossRef] [PubMed]
Taylor, M., Ramond, J.B., Tuffin, M., Burton, S., Eley, K., Cowan, D. Mechanisms and Applications of Microbial Solvent Tolerance. In Microbial Stress Tolerance for Biofuels, Microbiology Monographs 22, Liu, Z.L., Ed., Springer: Berlin/Heidelberg, Germany, 2012. [CrossRef]
Gallego, A., Gemini, V.L., Fortunato, M.S., Dabas, P., Rossi, S.L., Gomez, C.E., Vescina, C., Planes, E.I., Korol, S.E. Degradation and Detoxification of Cresols in Synthetic and Industrial Wastewater by an Indigenous Strain of Pseudomonas putida in Aerobic Reactors. Environ. Toxicol. 2008, 23, 664-671. [CrossRef] [PubMed]
Neumegen, R.A., Fernandez-Alba, A.R., Chisti, Y. Toxicities of Triclosan, Phenol, and Copper Sulfate in Activated Sludge. Environ. Toxicol. 2005, 20, 160-164. [CrossRef] [PubMed]
Ehimen, E.A., Connaughton, S., Sun, Z., Carrington, G.C. Energy recovery from lipid extracted, transesterified and glycerol codigested microalgae biomass. GCB Bioenergy 2009, 1, 371-381. [CrossRef]
Zhao, B., Ma, J., Zhao, Q., Laurens, L., Jarvis, E., Chen, S., Frear, C. Efficient anaerobic digestion of whole microalgae and lipid-extracted microalgae residues for methane energy production. Bioresour. Technol. 2014, 161, 423-430. [CrossRef] [PubMed]
Golmakani, M.-T., Mendiola, J.A., Rezaei, K., Ibanez, E. Pressurized limonene as an alternative bio-solvent for the extraction of lipids from marine microorganisms. J. Supercrit. Fluids 2014, 92, 1-7. [CrossRef]
Gilbert-Lopez, B., Mendiola, J.A., Fontecha, J., van Den Broek, L.A.M., Sijtsma, L., Cifuentes, A., Herrero, M., Ibanez, E. Downstream processing of Isochrysis galbana: A step towards microalgal biorefinery. Green Chem. 2015, 17, 4599-4609. [CrossRef]
Castro-Puyana, M., Herrero, M., Urreta, I., Mendiola, J.A., Cifuentes, A., Ibanez, E., Suarez-Alvarez, S. Optimization of clean extraction methods to isolate carotenoids from the microalga Neochloris oleoabundans and subsequent chemical characterization using liquid chromatography tandem mass spectrometry. Anal. Bioanal. Chem. 2013, 405, 4607-4616. [CrossRef] [PubMed]
Castro-Puyana, M., Perez-Sanchez, A., Valdes, A., Ibrahim, O.H.M., Suarez-Alvarez, S., Ferragut, J.A., Micol, V., Cifuentes, A., Ibanez, E., Garcia-Canas, V. Pressurized liquid extraction of Neochloris oleoabundans for the recovery of bioactive carotenoids with anti-proliferative activity against human colon cancer cells. Food Res. Int. 2016. [CrossRef]
Gilbert-Lopez, B., Mendiola, J.A., van den Broek, L.A.M., Houweling-Tan, B., Sijtsma, L., Cifuentes, A., Herrero, M., Ibanez, E. Green compressed fluid technologies for downstream processing of Scenedesmus obliquus in a biorefinery approach. Algal Res. 2017, 24, 111-121. [CrossRef]