Blokker BM, Wagensveld IM, Weustink AC et al (2015) Non-invasive or minimally invasive autopsy compared to conventional autopsy of suspected natural deaths in adults: a systematic review. Eur Radiol 26:1159–1179. doi:10.1007/s00330-015-3908-8
Donchin Y, Rivkind AI, Bar-Ziv J et al (1994) Utility of postmortem computed tomography in trauma victims. J Trauma 37:552–556. doi:10.1097/00005373-199410000-00006
Wichmann D, Obbelode F, Vogel H et al (2012) Virtual autopsy as an alternative to traditional medical autopsy in the intensive care unit. Ann Intern Med 156:123–130. doi:10.1059/0003-4819-156-2-201201170-00008
Varlet V, Bruguier C, Grabherr S et al (2014) Gas analysis of exhumed cadavers buried for 30 years: a case report about long time alteration. Int J Legal Med 128:719–724. doi:10.1007/s00414-014-0998-9
Varlet V, Smith F, Giuliani N et al (2015) When gas analysis assists with postmortem imaging to diagnose causes of death. Forensic Sci Int 251:1–10. doi:10.1016/j.forsciint.2015.03.010
Stefanuto P-H, Perrault KA, Grabherr S et al (2016) Postmortem internal gas reservoir monitoring using GC×GC-HRTOF-MS. Separations 3:24. doi:10.3390/separations3030024
Stadler S, Stefanuto P-H, Brokl M et al (2013) Characterization of volatile organic compounds from human analogue decomposition using thermal desorption coupled to comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Anal Chem 85:998–1005. doi:10.1021/ac302614y
Brasseur C, Dekeirsschieter J, Schotsmans EMJ et al (2012) Comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry for the forensic study of cadaveric volatile organic compounds released in soil by buried decaying pig carcasses. J Chromatogr A 1255:163–170. doi:10.1016/j.chroma.2012.03.048
Dekeirsschieter J, Stefanuto P-H, Brasseur C et al (2012) Enhanced characterization of the smell of death by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGC-TOFMS). PLoS One 7:e39005. doi:10.1371/journal.pone.0039005
Perrault KA, Nizio KD, Forbes SL (2015) A comparison of one-dimensional and comprehensive two-dimensional gas chromatography for decomposition odour profiling using inter-year replicate field trials. Chromatographia 78:1057–1070. doi:10.1007/s10337-015-2916-9
Stefanuto P-H, Perrault KA, Lloyd RM et al (2015) Exploring new dimensions in cadaveric decomposition odour analysis. Anal Methods 7:2287–2294. doi:10.1039/C5AY00371G
Taylor CM, Rosenhan AK, Raines JM, Rodriguez JM (2012) An arson investigation by using comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry. J Forensic Res 3:169–176. doi:10.4172/2157-7145.1000169
Nizio KD, Cochran JW, Forbes SL (2016) Achieving a near-theoretical maximum in peak capacity gain for the forensic analysis of ignitable liquids using GC × GC-TOFMS. Separations 3:1–17. doi:10.3390/separations3030026
Kueh AJ, Marriott PJ, Wynne PM, Vine JH (2003) Application of comprehensive two-dimensional gas chromatography to drugs analysis in doping control. J Chromatogr A 1000:109–124. doi:10.1016/S0021-9673(02)01998-2
Silva AI, Pereira HMG, Casilli A et al (2009) Analytical challenges in doping control: comprehensive two-dimensional gas chromatography with time of flight mass spectrometry, a promising option. J Chromatogr A 1216:2913–2922. doi:10.1016/j.chroma.2008.10.042
Song SM, Marriott P, Wynne P (2004) Comprehensive two-dimensional gas chromatography - quadrupole mass spectrometric analysis of drugs. J Chromatogr A 1058:223–232. doi:10.1016/j.chroma.2004.08.087
Mitrevski B, Veleska B, Engel E et al (2011) Chemical signature of ecstasy volatiles by comprehensive two-dimensional gas chromatography. Forensic Sci Int 209:11–20. doi:10.1016/j.forsciint.2010.11.008
Stefanuto P-H, Perrault KA, Focant J-F, Forbes S (2015) Fast chromatographic method for explosive profiling. Chromatography 2:213–224. doi:10.3390/chromatography2020213
Frysinger G (2002) GC×GC—A new analytical tool for environmental forensics. Environ Forensic 3:27–34
Varlet V, Smith F, de Froidmont S et al (2013) Innovative method for carbon dioxide determination in human postmortem cardiac gas samples using headspace-gas chromatography–mass spectrometry and stable labeled isotope as internal standard. Anal Chim Acta 784:42–46. doi:10.1016/j.aca.2013.04.046
Zhao W, Ouyang G, Pawliszyn J (2007) Preparation and application of in-fibre internal standardization solid-phase microextraction. Analyst 132:256–261. doi:10.1039/b612604a
Wang Y, O’Reilly J, Chen Y, Pawliszyn J (2005) Equilibrium in-fibre standardisation technique for solid-phase microextraction. J Chromatogr A 1072:13–17. doi:10.1016/j.chroma.2004.12.084
Rust L, Nizio KD, Forbes SL (2016) The influence of ageing and surface type on the odour profile of blood-detection dog training aids. Anal Bioanal Chem. doi:10.1007/s00216-016-9748-9
Nizio KD, Perrault KA, Troobnikoff AN et al (2016) In vitro volatile organic compound profiling using GC×GC-TOFMS to differentiate bacteria associated with lung infections: a proof-of-concept study. J Breath Res 10:26008. doi:10.1088/1752-7155/10/2/026008
Perrault KA, Stefanuto P, Dubois L et al (2016) A new approach for the characterization of organic residues from stone tools using GC×GC-TOFMS. Separations 3:1–16. doi:10.3390/separations3020016
Bean HD, Rees CA, Hill JE (2016) Comparative analysis of the volatile metabolomes of Pseudomonas aeruginosa clinical isolates. J Breath Res 10:47102. doi:10.1088/1752-7155/10/4/047102
Paczkowski S, Schütz S (2011) Post-mortem volatiles of vertebrate tissue. Appl Microbiol Biotechnol 91:917–935. doi:10.1007/s00253-011-3417-x
Sgorbini B, Bicchi C, Cagliero C et al (2015) Herbs and spices: characterization and quantitation of biologically-active markers for routine quality control by multiple headspace solid-phase microextraction combined with separative or non-separative analysis. J Chromatogr A 1376:9–17. doi:10.1016/j.chroma.2014.12.007
Reichenbach SE, Tian X, Tao Q et al (2011) Informatics for cross-sample analysis with comprehensive two-dimensional gas chromatography and high-resolution mass spectrometry (GCxGC-HRMS). Talanta 83:1279–1288. doi:10.1016/j.talanta.2010.09.057