Development of an analytical method for crystalline content determination in amorphous solid dispersions produced by Hot-Melt Extrusion using transmission Raman spectroscopy: A feasibility study.
[en] The development of a quantitative method determining the crystalline percentage in an amorphous solid dispersion is of great interest in the pharmaceutical field. Indeed, the crystalline Active Pharmaceutical Ingredient transformation into its amorphous state is increasingly used as it enhances the solubility and bioavailability of Biopharmaceutical Classification System class II drugs. One way to produce amorphous solid dispersions is the Hot-Melt Extrusion (HME) process. This study reported the development and the comparison of the analytical performances of two techniques, based on backscattering and transmission Raman spectroscopy, determining the crystalline remaining content in amorphous solid dispersions produced by HME.
Principal Component Analysis (PCA) and Partial Least Squares (PLS) regression were performed on preprocessed data and tended towards the same conclusions: for the backscattering Raman results, the use of the DuoScan™ mode improved the PCA and PLS results, due to a larger analyzed sampling volume. For the transmission Raman results, the determination of low crystalline percentages was possible and the best regression model was obtained using this technique. Indeed, the latter acquired spectra through the whole sample volume, in contrast with the previous surface analyses performed using the backscattering mode. This study consequently highlighted the importance of the analyzed sampling volume.
Research Center/Unit :
CIRM - Centre Interdisciplinaire de Recherche sur le Médicament - ULiège
Dumont, Elodie ; Université de Liège > Département de pharmacie > Chimie analytique
Cailletaud, Johan ; Université de Liège > Département de pharmacie > Chimie analytique
Thiry, Justine ; Université de Liège > Département de pharmacie > Pharmacie galénique
De Bleye, Charlotte ; Université de Liège > Département de pharmacie > Département de pharmacie
Sacre, Pierre-Yves ; Université de Liège > Département de pharmacie > Chimie analytique
Boiret, Mathieu
Evrard, Brigitte ; Université de Liège > Département de pharmacie > Pharmacie galénique
Hubert, Philippe ; Université de Liège > Département de pharmacie > Chimie analytique
Ziemons, Eric ; Université de Liège > Département de pharmacie > Département de pharmacie
Language :
English
Title :
Development of an analytical method for crystalline content determination in amorphous solid dispersions produced by Hot-Melt Extrusion using transmission Raman spectroscopy: A feasibility study.
Agrawal, A.M., Dudhedia, M.S., Zimny, E., Hot melt extrusion: development of an amorphous solid dispersion for an insoluble drug from mini-scale to clinical scale. AAPS J. 17 (2016), 133–147.
Bochmann, E.S., Neumann, D., Gryczke, A., Wagner, K.G., Micro-scale prediction method for API-solubility in polymeric matrices and process model for forming amorphous solid dispersion by hot-melt extrusion. Eur. J. Pharm. Biopharm. 107 (2016), 40–48.
Croker, D.M., Hennigana, M.C., Maher, A., Hua, Y., Ryder, A.G., Hodnett, B.K., A comparative study of the use of powder X-ray diffraction, Raman and near infrared spectroscopy for quantification of binary polymorphic mixtures of piracetam. J. Pharm. Biomed. Anal. 63 (2012), 80–86.
Docoslis, A., Huszarik, K.L., Papageorgiou, G.Z., Bikiaris, D., Stergiou, A., Georgarakis, E., Characterization of the distribution, polymorphism, and stability of nimodipine in its solid dispersions in polyethylene glycol by micro-Raman spectroscopy and powder X-ray diffraction. AAPS J. 9 (2007), E361–E370.
Engers, D., Teng, J., Jiminez-Novoa, J., Gent, P., Hossack, S., Campbell, C., Thomson, J., Ivanisevic, I., Templeton, A., Byrn, S., Newman, A., A solid-state approach to enable early development compounds: selection and animal bioavailability studies of an Itraconazole amorphous solid dispersion. J. Pharm. Sci. 99 (2010), 3901–3922.
Fule, R., Amin, P., Development and evaluation of lafutidine solid dispersion via hot melt extrusion: investigating drug-polymer miscibility with advanced characterisation. Asian J. Pharm. Sci. 9 (2014), 92–106.
Fule, R., Meer, T., Amin, P., Dhamecha, D., Ghadlinge, S., Preparation and characterisation of lornoxicam solid dispersion systems using hot melt extrusion technique. J. Pharm. Investig. 44 (2014), 41–59.
Gendrin, C., Roggo, Y., Collet, C., Pharmaceutical applications of vibrational chemical imaging and chemometrics: a review. J. Pharm. Biomed. Anal. 48 (2008), 533–553.
Gumaste, S.G., Gupta, S.S., Serajuddin, A.T.M., Investigation of polymer-surfactant and polymer-drug-surfactant miscibility for solid dispersion. AAPS J. 18 (2016), 1131–1143.
Hennigan, M.C., Ryder, A.G., Quantitative polymorph contaminant analysis in tablets using Raman and near infra-red spectroscopies. J. Pharm. Biomed. Anal. 72 (2013), 163–171.
Janssens, S., de Armas, H.N., Remon, J.P., Van den Mooter, G., The use of a new hydrophilic polymer, Kollicoat IR®, in the formulation of solid dispersions of Itraconazole. Eur. J. Pharm. Sci. 30 (2007), 288–294.
Kanaujia, P., Poovizhi, P., Ng, W.K., Tan, R.B.H., Amorphous formulations for dissolution and bioavailability enhancement of poorly soluble APIs. Powder Technol. 285 (2015), 2–15.
Kogermann, K., Penkina, A., Predbannikova, K., Jeeger, K., Veski, P., Rantanen, J., Naelapää, K., Dissolution testing of amorphous solid dispersions. Int. J. Pharm. 444 (2013), 40–46.
Li, Y., Chowa, P.S., Tana, R.B.H., Quantification of polymorphic impurity in an enantiotropic polymorph system using differential scanning calorimetry, X-ray powder diffraction and Raman spectroscopy. Int. J. Pharm. 415 (2011), 110–118.
Li, Y., Pang, H., Guo, Z., Lin, L., Dong, Y., Li, G., Lu, M., Wu, C., Interactions between drugs and polymers influencing hot melt extrusion. J. Pharm. Pharmacol. 66 (2014), 148–166.
Lim, R.T.Y., Ong, C.K., Cheng, S., Ng, W.K., Amorphization of crystalline active pharmaceutical ingredients via formulation technologies. Powder Technol. 311 (2017), 175–184.
Mah, P.T., Fraser, S.J., Reish, M.E., Rades, T., Gordon, K.C., Strachan, C.J., Use of low-frequency Raman spectroscopy and chemometrics for the quantification of crystallinity in amorphous griseofulvin tablets. Vib. Spectrosc. 77 (2015), 10–16.
Netchacovitch, L., Thiry, J., De Bleye, C., Chavez, P.-F., Krier, F., Sacré, P.-Y., Evrard, B., Hubert, Ph., Ziemons, E., Vibrational spectroscopy and microspectroscopy analyzing qualitatively and quantitatively pharmaceutical hot melt extrudates. J. Pharm. Biomed. Anal. 113 (2015), 21–33.
Nikowitz, K., Domjan, A., Pintye-Hodi, K., Regdon, G. Jr., Multivariate calibration of the degree of crystallinity in intact pellets by X-ray powder diffraction. Int. J. Pharm. 502 (2016), 170–176.
Sacré, P.-Y., De Bleye, C., Chavez, P.-F., Netchacovitch, L., Hubert, Ph., Ziemons, E., Data processing of vibrational chemical imaging for pharmaceutical applications. J. Pharm. Biomed. Anal. 101 (2014), 123–140.
Saerens, L., Vervaet, C., Remon, J.P., De Beer, T., Process monitoring and visualization solutions for hot-melt extrusion: a review. J. Pharm. Pharmacol. 66 (2014), 180–203.
Saerens, L., Ghanam, D., Raemdonck, C., Francois, K., Manz, J., Krüger, R., Krüger, S., Vervaet, C., Remon, J.P., De Beer, T., In-line solid state prediction during pharmaceutical hot-melt extrusion in a 12 mm twin screw extruder using Raman spectroscopy. Eur. J. Pharm. Biopharm. 87 (2014), 606–615.
Sarode, A.L., Sandhu, H., Shah, N., Malick, W., Zia, H., Hot melt extrusion (HME) for amorphous solid dispersions: predictive tools for processing and impact of drug-polymer interactions on supersaturation. Eur. J. Pharm. Sci. 48 (2013), 371–384.
Sarode, A.L., Sandhu, H., Shah, N., Malick, W., Zia, H., Hot melt extrusion for amorphous solid dispersions: temperature and moisture activated drug-polymer interactions for enhanced stability. Mol. Pharm. 10 (2013), 3665–3675.
Scoutaris, N., Vithani, K., Slipper, I., Chowdhry, B., Douroumis, D., SEM/EDX and confocal Raman microscopy as complementary tools for the characterization of pharmaceutical tablets. Int. J. Pharm. 470 (2014), 88–98.
Shah, S., Maddineni, S., Lu, J., Repka, M.A., Melt extrusion with poorly soluble drugs. Int. J. Pharm. 453 (2013), 233–252.
Thiry, J., Lebrun, P., Vinassa, C., Adam, M., Netchacovitch, L., Ziemons, E., Hubert, Ph., Krier, F., Evrard, B., Continuous production of itraconazole-based solid dispersions by hot melt extrusion: preformulation, optimization and design space determination. Int. J. Pharm. 515 (2016), 114–124.
Tian, B., Zhang, L., Pan, Z., Gou, J., Zhang, Y., Tang, X., A comparison of the effect of temperature and moisture on the solid dispersions: aging and crystallization. Int. J. Pharm. 475 (2014), 385–392.
Vajna, B., Pataki, H., Nagy, Z., Farkas, I., Marosi, G., Characterization of melt extruded and conventional isoptin formulations using Raman chemical imaging and chemometrics. Int. J. Pharm. 419 (2011), 107–113.
Van Den Mooter, G., The use of amorphous solid dispersions: a formulation strategy to overcome poor solubility and dissolution rate. Drug Discov. Today Technol. 9 (2012), e79–e85.
Vigh, T., Drávavölgyi, G., Sóti, P.L., Pataki, H., Igricz, T., Wagner, I., Vajna, B., Madarász, J., Marosi, G., Nagy, Z.K., Predicting final product properties of melt extruded solid dispersions from process parameters using Raman spectrometry. J. Pharm. Biomed. Anal. 98 (2014), 166–177.
Widjaja, E., Kanaujia, P., Lau, G., Ng, W.K., Garland, M., Saal, M., Hanefeld, A., Fischbach, M., Maio, M., Tan, R.B.H., Detection of trace crystallinity in an amorphous system using Raman microscopy and chemometric analysis. Eur. J. Pharm. Sci. 42 (2011), 45–54.