Paper published in a book (Scientific congresses and symposiums)
Foreseeing New Control Challenges in Electricity Prosumer Communities
Olivier, Frédéric; Marulli, Daniele; Ernst, Damien et al.
2017In Proc. of the 10th Bulk Power Systems Dynamics and Control Symposium – IREP’2017
Peer reviewed
 

Files


Full Text
F. Olivier et al - 2017 - Foreseeing New Control Challenges in Electricity Prosumer Communities.pdf
Author preprint (499.25 kB)
Download
Annexes
F. Olivier et al. - 2017 - Forseeing New Control Challenges in Electricity Prosumer Communities IREP Presentation.pdf
Publisher postprint (387.53 kB)
IREP 2017 Presentation
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Energy communities; low-voltage; machine learning; distributed energy resources; photovoltaic; storage; power system; distribution networks
Abstract :
[en] This paper is dedicated to electricity prosumer communities, which are groups of people producing, sharing and consuming electricity locally. This paper focuses on building a rigorous mathematical framework in order to formalise sequen- tial decision making problems that may soon be encountered within electricity prosumer communities. After introducing our formalism, we propose a set of optimisation problems reflecting several types of theoretically optimal behaviours for energy exchanges between prosumers. We then discuss the advantages and disadvantages of centralised and decentralised schemes and provide illustrations of decision making strategies, allowing a prosumer community to generate more distributed electricity (compared to commonly applied strategies) by mitigating over- voltages over a low-voltage feeder. We finally investigate how to design distributed control schemes that may contribute reaching (at least partially) the objectives of the community, by resort in to machine learning techniques to extract, from centralised solution(s), decision making patterns to be applied locally. First empirical results show that, even after a post-processing phase so that it satisfies physical constraints, the learning approach still performs better than predetermined strategies targeting safety first, then cost minimisation.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Olivier, Frédéric ;  Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
Marulli, Daniele;  Politecnico di Torino > Department of ENERGY
Ernst, Damien  ;  Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
Fonteneau, Raphaël ;  Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Dép. d'électric., électron. et informat. (Inst.Montefiore)
Language :
English
Title :
Foreseeing New Control Challenges in Electricity Prosumer Communities
Publication date :
August 2017
Event name :
The 10th Bulk Power Systems Dynamics and Control Symposium – IREP’2017
Event place :
Espinho, Portugal
Event date :
du 21 août 2017 au 1 septembre 2017
Main work title :
Proc. of the 10th Bulk Power Systems Dynamics and Control Symposium – IREP’2017
Peer reviewed :
Peer reviewed
Available on ORBi :
since 23 June 2017

Statistics


Number of views
1126 (42 by ULiège)
Number of downloads
749 (35 by ULiège)

Bibliography


Similar publications



Contact ORBi