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Abstract—This paper is dedicated to electricity prosumer
communities, which are groups of people producing, sharing and
consuming electricity locally. This paper focuses on building a
rigorous mathematical framework in order to formalise sequen-
tial decision making problems that may soon be encountered
within electricity prosumer communities. After introducing our
formalism, we propose a set of optimisation problems reflecting
several types of theoretically optimal behaviours for energy
exchanges between prosumers. We then discuss the advantages
and disadvantages of centralised and decentralised schemes and
provide illustrations of decision making strategies, allowing a
prosumer community to generate more distributed electricity
(compared to commonly applied strategies) by mitigating over-
voltages over a low-voltage feeder. We finally investigate how to
design distributed control schemes that may contribute reaching
(at least partially) the objectives of the community, by resort
in to machine learning techniques to extract, from centralised
solution(s), decision making patterns to be applied locally. First
empirical results show that, even after a post-processing phase so
that it satisfies physical constraints, the learning approach still
performs better than predetermined strategies targeting safety
first, then cost minimisation.

I. INTRODUCTION

This paper is dedicated to Electricity Prosumer Commu-
nities (EPCs), i.e. groups of people producing, sharing and
consuming electricity locally. One of the main triggers of the
emergence of the concept of energy communities is distributed
electricity generation. By distributed electricity generation, we
mainly mean PhotoVoltaic (PV) units, small wind turbines
and Combined Heat and Power (CHP) that may be installed
close to consumers. A cost-drop has been observed over past
recent years, especially in the cost of producing PV panels.
In addition to this, promises raised by recent advances made
in the field of Electric Vehicles (EVs) and batteries may also
emphasise in the coming years the metamorphosis of the elec-
tricity production, distribution and consumption landscape that
is already happening. In addition to electricity production and
storage technology improvements, one should also mention the
emergence of information technologies facilitating interactions
between prosumers [1]. One should also note the existence of
projects related to the use of distributed ledgers for managing
energy exchanges [2] between microgrids1.

Our goal is to propose a rigorous mathematical framework
for studying energy prosumer communities. We first propose

1See for instance the Brooklyn Microgrid project.

a mathematical framework for modelling the interactions be-
tween several prosumers. We then formalise a few optimisation
problems targeting several different objectives (e.g., maximis-
ing “green” production, taking losses into account, optimising
costs and revenues, etc). We address two ways to target these
objectives: centralised and distributed control schemes, and
we provide examples for each. In the centralised approach,
we propose to design a community strategy dedicated to the
maximisation of the local renewable energy production by
formalising it as an Optimal Power Flow (OPF) problem.
Then, in the context where we want to minimise community
costs, we propose to design a distributed strategy that may still
approach community optimality. To do so, we build upon a
recent paper [3] which proposes a centralised optimal strategy
named Forward-Backward Sweep OPF (FBS-OPF). We use
time series provided by FBS-OPF solutions to build learning
sets in the form (input, output), where input contains only
local measurements related to one single prosumer, and where
output contains an optimal value that was outputted by
the FBS-OPF for this input configuration. The learning sets
are processed by machine learning techniques in order to
build regressors able to compute suggestions for any input
configuration.

The remainder of the paper is structured as follows: Section
II describes EPCs and the main drivers for their emergence.
Section III details our EPC mathematical formalisation, and
Section IV specifically focuses on formalising possible ob-
jectives for EPCs. Sections V, VI and VII describe control
strategies, from centralised to decentralised approaches, to
target community objectives, also including numerical results.
Section VIII discusses how community control could be ex-
tended to unbalanced three-phase networks, and Section IX
concludes.

II. THE ELECTRICITY PROSUMER COMMUNITY

A. Definition

An Electricity Prosumer Community (EPC) is a group of
electricity consumers and producers who decide to unite in
order to reach a specific goal. In many ways, it is similar to
a microgrid: it is composed of Distributed Energy Resources
(DERs), loads (shiftable or not), possibly storage and EVs.
However, it has a key distinction: it is not designed to operate
off-the-grid. To reach this specific goal, it uses the flexibility



of its assets to optimise its behaviour. Furthermore, we will
assume that EPCs operate at a local level. It has been suggested
to cluster consumers and producers in communities based on
their production and consumption profiles regardless of their
geographical location. This would be done in order to optimise
their relations to energy markets [4]. However, one driver for
the community is to increase the hosting capacity of electrical
networks and thus, the operational constraints should be taken
into account and the impact of the community on the network
studied. In this paper, we consider that the energy community
is composed of prosumers that are connected to the same low-
voltage distribution network and that there is only one point
of connection between the community and the power system,
which is called the root connection of the community. This
means that the power exchanges between the prosumers do
not transit through distribution transformers. Examples of such
communities include companies in an industrial park, houses
in suburban areas, co-ownerships of PV panels installed on
rooftops of apartment buildings, etc.

B. Drivers

On the one hand, the drivers for energy communities are
clear when an infrastructure is shared between its members, be
it DER, storage, CHP or EV charging stations. The installation
of such infrastructure is conditioned by the existence itself of
a community.

On the other hand, the drivers for a community where all
members own their production units or storage are less trivial
because they arise from the structure of the energy sector and
the behaviour of electrical networks. If we consider commu-
nities that exist solely for financial purposes, it is certain that
the benefits of the community have to surpass the sum of the
benefits of the prosumers if they were isolated, taking into
consideration the costs for operating the community. These
benefits originate from two sides: network operations and
energy markets.

Regarding the first, at the level of a single prosumer, self-
consumption by consuming produced power locally allows
the reduction of the network losses and the overall use of
the networks, and a reduction of the electricity bill. Com-
munities extend the perimeter of self-consumption from one
prosumer to several to pool production and flexibility means.
This pooling allows for an increased self-consumption of the
community, for more optimised power flows, and an increased
hosting capacity.

Considering energy markets, by pooling production and
flexibility, communities could reach a size where they could
offer services to the grid and negotiate their electricity prices.

III. FORMALISING AN ENERGY PROSUMER COMMUNITY

A. The Prosumers

We consider a set of N ∈ N prosumers dynamically
interacting with each other over a time horizon T ∈ N. We
first consider a discrete time setting: t ∈ {0, . . . , T − 1}. In
the following, power related variables are average values over
a time window ∆, corresponding to the time interval between

two time steps. At every time-step t ∈ {0, . . . , T − 1}, each
prosumer is characterised by active (resp. reactive2) power
variables subscripted by P (resp. Q): production variables
P

(i)
P,t and P

(i)
Q,t, (note that P (i)

Q,t is positive when producing
reactive power and negative when consuming it), a power
injected into a storing device S(i)

t , the level of charge of the
storage device λ(i)t , loads (or consumptions) L(i)

P,t and L
(i)
Q,t,

and powers injected into the distribution network D
(i)
P,t and

D
(i)
Q,t.
We assume that all prosumers may interact with each other.

In particular, we denote by θ
(i→j)
t the (positive) power that

is transferred at time t from prosumer (i) to prosumer (j),
(i, j) ∈ {1, . . . , N}2. In the same time, prosumer (j) receives
a (positive) power from prosumer (i) denoted by θ

(j←i)
t . By

definition, we have:

∀(i, j) ∈ {1, . . . , N}2,∀t ∈ {0, . . . , T − 1},
θ
(i→j)
t = θ

(j←i)
t (1)

with the convention that θ(i→i)t = 0, θ
(i←i)
t = 0 ∀i, t.

At every time step, the active power that is produced by
prosumer (i) must satisfy the following relationship:

∀t, i, P (i)
P,t = L

(i)
P,t +D

(i)
P,t + S

(i)
P,t (2)

∀t, i, D(i)
P,t =

N∑
j=1

(
θ
(i→j)
t − θ(i←j)t

)
+ δD

(i)
P,t (3)

where δD
(i)
P,t is the difference between the power injected

into the distribution network and the sum of active power
exchanges between the members of the community. Note that,
in the case where the local production P (i)

P,t is not high enough
to cover the load L

(i)
P,t, the variable D

(i)
P,t may take some

negative values (depending also on the amount of power that
can be taken from the storage device).

The conservation of reactive power at the prosumer’s loca-
tion induces the following:

∀t, i, P (i)
Q,t = L

(i)
Q,t +D

(i)
Q,t (4)

In this paper, we focus on energy exchanges among pro-
sumers. For this reason, we choose to neglect electricity losses
that are not directly associated with energy exchanges between
prosumers.

Prosumers may not always be able to produce electricity at
its maximal potential (for instance, PV production may be
curtailed when the local storage device is fully recharged,
no exchanges between prosumers are possible, and over-
voltages are observed on the distribution network because
many prosumers are injecting electricity simultaneously: such
a situation may appear on sunny days [5], [6]). Thus, for
every prosumer, for every time-step, we define the maximal

2Considering reactive power is important as it allows greater flexibility in
the management of the networks and can allow the community to have more
leverage on the network constraints.



production potential which depends on hardware and weather
data:

∀t, i P (i)
P,t ≤ P

(i),max
P,t (5)

P
(i),max
t may be influenced by several parameters, in particu-

lar, weather conditions.
The reactive power is limited by the capability curve of

the distributed energy resources. It depends on the minimum
power factor, the maximum apparent power, and the current
active power production.

∀t, i
∣∣∣P (i)
Q,t

∣∣∣ ≤ P (i),max
Q

(
P

(i)
P,t

)
(6)

The injected power into the storage device is capped by a
factor that mainly depends on the characteristics of the storage
device and its current level of charge:

∀t, i,
∣∣∣S(i)
t

∣∣∣ ≤ S(i),max
(
λ
(i)
t

)
(7)

The injected power into the distribution network is also
capped, depending on the load and local production, charac-
teristics and level of charge of the battery, and also additional
(stochastic) variables, such as weather, that may influence the
voltage of the low-voltage feeder (e.g. inability to inject power
into the network if the voltage is higher than 1.1 p.u.), thus
potentially preventing from power injection:

∀t, i,
∣∣∣D(i)

P,t

∣∣∣
≤ D(i),max

P

(
P

(i)
P,t, P

(i)
Q,t, L

(i)
P,t, L

(i)
Q,t, S

(i)
t , D

(j 6=i)
P,t , D

(j 6=i)
Q,t

)
(8)

∀t, i,
∣∣∣D(i)

Q,t

∣∣∣
≤ D(i),max

Q

(
P

(i)
P,t, P

(i)
Q,t, L

(i)
P,t, L

(i)
Q,t, S

(i)
t , D

(j 6=i)
P,t , D

(j 6=i)
Q,t

)
(9)

The level of charge of the storage capacity is also bounded:

∀t, i 0 ≤ λ(i)t ≤ λ(i),max (10)

B. The Community

Everything that is not produced by the community has
to come from the distribution network through the root of
the community. By measuring the active and reactive power
transfer at the root, and by comparing the measured powers
to those measured at the prosumers’ location, we can deduce
the losses and the import of reactive power:

∀t Λ
(c)
P,t = D

(c)
P,t −

N∑
i=1

D
(i)
P,t (11)

∀t Λ
(c)
Q,t = D

(c)
Q,t −

N∑
i=1

D
(i)
Q,t (12)

where Λ
(c)
P,t (resp. Λ

(c)
Q,t) denotes the overall losses inside the

electrical network of the community (resp. reactive power

absorbed by the community network lines), D(c)
P,t (resp. D(c)

P,t)
is the active (resp. reactive) power measured at the root of the
community.

C. Costs and Revenues

At every time-step, we define a set of price variables,
expressed in e/kWh. First, each prosumer (i) may purchase
electricity from its retailer at a specific price Pr(D→i)t . Also,
each prosumer (i) may buy electricity from prosumer (j)

(j 6= i) at a price Pr(j→i)t . Each prosumer (i) may also sell
electricity to the (distribution) network at a price Pr

(i→D)
t ,

and to other prosumers at a price Pr
(i→j)
t . By convention,

we assume that all prices considered in the paper are positive.
From time t to t+ 1, a prosumer (i) will incur the following
cost:

c
(i)
t = ∆

(
max

(
−δD(i)

t , 0
)
Pr

(D→i)
t

+
∑N
j=1 max

(
θ
(i←j)
t , 0

)
Pr

(j→i)
t

)
(13)

At the same time, they will also receive the following rev-
enues:

r
(i)
t = ∆

(
max

(
δD

(i)
t , 0

)
Pr

(i→D)
t

+
∑N
j=1 max

(
θ
(j←i)
t , 0

)
Pr

(j→i)
t

)
(14)

D. Community Dynamics

The variables dynamically evolve over time, also suffering
some stochasticity. We define a state vector Ξt as being
the collection of all (measurable) variables related with the
physical characteristics of the system, and a price vector Φt
gathering all prices : ∀t ∈ {0, . . . , T − 1},

Ξt =



P
(1)
P,t P

(1)
Q,t

P
(1),max
P,t P

(1),max
Q,t

...
...

P
(N)
P,t P

(N)
Q,t

P
(N),max
P,t P

(N),max
Q,t

S
(1)
t λ

(1)
t

...
...

S
(N)
t λ

(N)
t

L
(1)
P,t L

(1)
Q,t

...
...

L
(N)
P,t L

(N)
Q,t

D
(1)
P,t D

(1)
Q,t

...
...

D
(N)
P,t D

(N)
Q,t



, Φt =



Pr
(D→1)
t

Pr
(1→D)
t

...
Pr

(D→N)
t

Pr
(N→D)
t

Pr
(1→2)
t

Pr
(2→1)
t
...

Pr
(1→N)
t

Pr
(N→1)
t

...
Pr

(N−1→N)
t

Pr
(N→N−1)
t



(15)

We also define two series of matrices. The first series Θ→t is
related to energy exchanges between prosumers according the
the producer’s point of view, whereas the second series Θ←t



is written according to the receiver’s (or consumer’s) point of
view:

Θ→t =
(
θ
(i→j)
t

)
i,j
, Θ←t =

(
θ
(i←j)
t

)
i,j

(16)

Since it may not be easy to assess whether the system
defined through the previously described state vectors is
Markovian or not, we have : ∀t ∈ {0, . . . , T − 1},

Ξt+1 = F (Ξt,Φt,Θ
→
t ,Θ

←
t . . . ,Ξ0,Φ0,Θ

→
0 ,Θ

←
0 , ωt) (17)

where ωt ∈ Ω is an exogenous random variable drawn accord-
ing to an exogenous, time-dependent probability distribution
ωt ∼ Pt(·).

IV. NEW CONTROL CHALLENGES

In this paper, we focus on the formalisation of decision
making problems within a community of energy prosumers.
Many control algorithms have already been proposed in lit-
erature, however, without specifically approaching it from
a community angle (see for example [7]–[9]). By decision
making, we mean that at every time step, prosumers have
the opportunity to make several decisions: (i) Adapting their
level of production and/or consumption, (ii) buying/selling to
other prosumers and (iii) buying /selling to the retailer. In the
following, we detail a few optimisation criteria that may be
considered when optimising a community of prosumers.

A. Maximising the distributed production

As briefly discussed previously, it may occur that decen-
tralised production may by curtailed, mainly because load,
storage and the distribution network may not be able to host it
on some sunny days. It may make sense to investigate control
strategies dedicated to maximising decentralised production.
More formally, one may seek to optimise, over the time
horizon T , the production of decentralised electricity:

max
P

(i)
P,t, P

(i)
Q,t, L

(i)
P,t, L

(i)
Q,t, S

(i)
t ,Θ→t ,Θ

←
t

t ∈ {0, . . . , T − 1}
i ∈ {1, . . . , N}

E

[
T−1∑
t=0

N∑
i=1

P
(i)
P,t

]
(18)

while satisfying all constraints and time coupling between time
steps.

Another optimisation criterion that may be of interest is to
optimise distributed production while also limiting losses due
to energy exchanges:

max
P

(i)
P,t, P

(i)
Q,t, L

(i)
P,t, L

(i)
Q,t, S

(i)
t ,

Θ→t ,Θ
←
t

t ∈ {0, . . . , T − 1}
i ∈ {1, . . . , N}

E

[
T−1∑
t=0

N∑
i=1

P
(i)
P,t − Λ

(c)
P,t

]
(19)

while satisfying all constraints and time coupling between
time-steps.

B. Optimising overall costs and revenues

Costs and revenues may be globally optimised by optimising
the overall costs and revenues of the prosumer community:

max
P

(i)
P,t, P

(i)
Q,t, L

(i)
P,t, L

(i)
Q,t, S

(i)
t ,

Θ→t ,Θ
←
t

t ∈ {0, . . . , T − 1}
i ∈ {1, . . . , N}

E

[
T−1∑
t=0

N∑
i=1

r
(i)
t − c

(i)
t

]

(20)

while satisfying all constraints and coupling between time-
steps.

V. CONTROL STRATEGIES

To achieve the objectives formalized in the previous section,
two classes of control strategies compete with each other: a
centralised one and a distributed one. All control strategies
require controllable inverters, batteries, charging stations for
active and reactive power. Controllable loads can also be
considered. More specifically, in a centralised scheme, the
modulation orders are computed by a centralised entity re-
sponsible for gathering the data, computing the orders and
sending them to the prosumers. In a distributed scheme, all
actors compute their own actions based on local objectives and
measurements. The choice for a control strategy depends on
several assumptions regarding the available information on the
network (a detailed electrical model, estimation of the distance
between the prosumer and the distribution transformer, etc.),
the presence of communication (GPRS, PLC, Broadband, etc.),
the presence of storage or, a central controller.

VI. CENTRALISED SCHEMES

A. Technical challenges for building the centralised scheme

A centralised control scheme comprises three different parts.
The first part is all the elements on which it relies for acquiring
information about the system it controls. The second part is
the “brain” of the scheme, something that is usually called
the controller in the control literature. It computes, from the
(history of) information, control actions. The third and last
part is the infrastructure used for sending and applying its
control actions. In the next subsections, we discuss the main
elements of infrastructure that need to be put in place to build
a centralised control scheme.

1) Information gathering: This part is typically composed
of sensors used for measuring physical values, and of a com-
munication infrastructure for sending them to the controller.

A centralised control scheme needs a full knowledge of
the system. Therefore, the infrastructure needs to have: (i)
Sensors able to measure the power consumed by the loads,
the current state of charge of the batteries, estimation of the
maximum production of DERs, etc. and (ii) communication
channels able to transfer these measurements from the houses
to the centralised controller. As communication channels,
different technologies exist. For example, internet connections



or General Packet Radio Service (GPRS) connections can be
used. We could also think about using Power Line Commu-
nication (PLC) that carries data on the AC line. A mix of
several communication technologies could also be used. For
example, the data from the houses could be transmitted using
a PLC-based technology to the nearest substation, from which
GPRS technology would be used for transferring them to the
centralised controller.

2) The centralised controller for processing the informa-
tion: The second part of the infrastructure is related to the
machinery needed for storing the information gathered about
the system, processing this information, and computing the
control actions based on measurements.

3) From computational results to applied actions: Once
the actions have been computed by the centralised controller,
they need to be applied to the system. This implies having
a communication channel between the centralised controller
and the inverters. This also implies having inverters which are
able to modify, upon request, the amount of active and reactive
power injected into the network.

B. Local Energy Markets

As a way to target the goals of an EPC, it has been suggested
creating local energy markets to generate incentives that boost
investment in DER while at the same time creating enticements
for containing and balancing the renewable energy produced
[10]. In this paper, the authors propose a combined market
model for energy, flexibility and services at the neighbourhood
level. The market is managed by an SESP (Smart Energy
Service Provider) which can operate as a broker when local
trades are peer-to-peer, as a retailer for over-the-counter sales
with bilateral contracts, or as a market maker when a call
auction is necessary.

C. Optimal Power Flow

Another scheme to solve the control challenges in a cen-
tralised fashion is to use Optimal Power Flow techniques,
where the objectives and the constraints are the ones in Section
III. In addition to those constraints, power flow constraints are
added to link the powers injected at the node of the network
to the voltages. Several methods exist to solve such problems,
such as in [11]. A method of particular interest is the one
developed by Fortenbacher et al. [3] where they adapt the
Forward-Backward Sweep algorithm to OPF by linearising the
power flow equations, given common assumptions that can be
made in low-voltage distribution networks such as high R/X
ratio, small angles deviation, etc.

D. A first illustration: optimising PV injection over the net-
work without storage

In this section, we assume that the low-voltage feeder
gathers N houses, each of them being provided with a photo-
voltaic installation. We provide an illustration of the network
in Figure 1. Presuming a deterministic setting, the following
experiments show how to control the active power injected
into the distribution network by each inverter for each time

step in order to maximise the overall injected power while
avoiding over-voltages:

∀t
(
P

(1),∗
P,t , . . . , P

(N),∗
P,t

)
∈ arg max
P

(1)
P,t ,...,P

(N)
P,t

N∑
i=1

P
(i)
P,t (21)

subject to operational constraints.
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Fig. 1. Graphic representation of the test network.

In the following, we assume that:
• The electrical distances between two neighbouring houses

are the same and all electrical cables have the same
electric properties,

• The line resistance is 0.24 Ω km,
• The line reactance is 0.1 Ω km,
• The distance between houses 50 m,
• The nominal voltage of the network is 400 V,
• The value of the impedance of the Thévenin equivalent
YTh is equal to 0.0059 + j0.0094 Ω,

• The value of the Thévenin voltage is equal to 420 V.
As a consequence, for having a fully defined energy-based

prosumer community; we just need to define the four following
quantities:
• The number of houses is set to N = 18,
• The impedance between two neighbouring houses,
• The load profile, for every house and every time-step.
In Figure 2, we provide a graph of the evolution of the PV

energy production for all the houses of the feeder. In Figure 3,

Time
00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

P
V

 a
c
ti
v
e

 p
o

w
e

r 
p

ro
d

u
c
ti
o

n
 (

k
W

)

0

1

2

3

4

5

6

7

8

9

data1
data2
data3
data4
data5
data6
data7
data8
data9
data10
data11
data12
data13
data14
data15
data16
data17
data18

Fig. 2. Illustration of the PV production of the 3 last houses of the low-voltage
feeder over 24 hours.



we provide a graph of the evolution of the voltage for all
buses of the feeder. One can observe that the production of
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Fig. 3. Illustration of the voltage potential over 24 hours.

houses located at the end of the feeder (i.e., far from the
transformer) is modulated in order to avoid over-voltages.
Even if the community still suffers partial curtailment, it has
to be compared with the complete disconnection of PV units
when overvoltages are observed. In the centralised community
strategy, the total curtailment was 21.38 kWh, whereas the
complete disconnection of inverters observing an overvoltage
at their bus would lead to a curtailment of 31.63 kWh.

VII. DISTRIBUTED SCHEMES

In the previous section, we have proposed a centralised
control scheme to suppress overvoltages in the community.
As specified in Section VI-A, one of the main shortcomings
of centralised controllers is their cost of implementation and
maintenance. They indeed require building and maintaining a
costly communication infrastructure between the houses and
the centralised controllers. They also require a detailed model
of the low-voltage network that may be expensive to obtain.
Therefore, it would be interesting to design other types of
control schemes that would be much cheaper. Ideally, these
schemes should not rely on an expensive communication
architecture and should be able to work even without knowing
a detailed model of the low-voltage network.

In this section, we investigate how to design distributed con-
trol schemes that may contribute to reaching (at least partially)
the objectives of the community. Our strategy is to resort to
machine learning techniques that may extract, from centralised
solution(s), decision making patterns to be applied locally,
i.e. by only measuring features about the (local) prosumer.
Our machine learning approach is an imitative learning-type
approach where we learn four different regressors from data.
These four regressors are dedicated to learning the optimal
levels of active power production, reactive power production,
power injected into the storage device and power drawn from
the storage device to be applied by prosumer (i).

A. Generating data for solving machine learning tasks

First, for each prosumer i ∈ {1, . . . , N}, we generate a set
of load profiles L(i)

P,t, t ∈ {1, . . . , T} and maximal production
potentials P (i),max

P,t , t ∈ {1, . . . , T}, associated with a time
series of price vectors φt, t ∈ {1, . . . , T}. We consider the
optimisation criterion described in Equation 20. This power
flow problem can be solved using, for instance, the FBS-OPF
algorithm proposed by [3]. Solving one such problem outputs
a time series of data, corresponding to the evolution of all the
indicators over the time horizon:[

Ξ∗0, . . . ,Ξ
∗
T−1

]
(22)

From this time series of data, one can extract a series of local
data, i.e. relative to one single prosumer (i):[

Ξ
(i),∗
0 , . . . ,Ξ

(i),∗
T−1

]
(23)

where ∀t ∈ {0, . . . , T − 1}, ∀i ∈ {1, . . . , N},

Ξ
(i),∗
t =


P

(i),∗
P,t P

(i),∗
Q,t

P
(i),max
P,t P

(i),max
Q,t

S
(i),∗
t λ

(i),∗
t

L
(i)
P,t L

(i)
Q,t

D
(i),∗
P,t D

(i),∗
Q,t

 , (24)

From these extractions, we generate the following learning
sets:
• For generating a learning set dedicated to learning how

to optimize the level of active power production, we
process the variables Ξ

(i),∗
t into the following set of

(input, output) pairs:

LP =
{(
ini,tP , out

i,t
P

)}i=N,t=T−1
i=1,t=0

(25)

where, ∀t ∈ {0, . . . , T − 1}, ∀i ∈ {1, . . . , N},

ini,tP =(
i, |v(i)

t |, arg(v
(i),∗
t ), φt, λ

(i),∗
t , L

(i)
P,t, P

(i),max
P,t

)
(26)

outi,tP = P
(i),∗
P,t (27)

where:
– i : id number of the bus
– |v(i)

t | : magnitude of the voltage at bus i at time step
t

– arg(v
(i)
t ) : phase of the voltage at bus i at time step t

– φt : electricity price at time step t, considered as being
unique in the whole feeder

– λ
(i)
t : level of charge of the storage of bus i at time

step t
– L

(i)
P,t : load consumption at bus i at time step t

– P
(i),max
P,t : maximal production potential at bus i at

time step t
• For generating a learning set dedicated to learning how

to optimize the level of reactive power production, we



process the whole variables Ξ
(i),∗
t into the following set

of (input, output) pairs:

LQ =
{(
ini,tQ , out

i,t
Q

)}i=N,t=T−1
i=1,t=0

(28)

where, ∀t ∈ {0, . . . , T − 1}, ∀i ∈ {1, . . . , N},
ini,tQ = = ini,tP

outi,tQ = = P
(i),∗
Q,t

• For generating a learning set dedicated to learning how
to optimize the level of power injected into the battery,
we process the whole variables Ξ

(i),∗
t into the following

set of (input, output) pairs:

LC =
{(
ini,tC , out

i,t
C

)}i=N,t=T−1
i=1,t=0

(29)

where, ∀t ∈ {0, . . . , T − 1}, ∀i ∈ {1, . . . , N},
ini,tC = ini,tP

outi,tC = max
(
S
(i),∗
t , 0

)
• For generating a learning set dedicated to learning how

to optimize the level of power injected into the battery,
we process the whole variables Ξ

(i),∗
t into the following

set of (input, output) pairs:

LD =
{(
ini,tD , out

i,t
D

)}i=N,t=T−1
i=1,t=0

(30)

where, ∀t ∈ {0, . . . , T − 1}, ∀i ∈ {1, . . . , N},
ini,tD = ini,tP

outi,tD = max
(
−S(i),∗

t , 0
)

The machine learning task is performed using Extremely
Randomized Trees [12] using the Scikit-learn library [13].

B. Post-processing the predictions
When the regressors learned from data are used to set

the value of a decision variable inside the community, their
output needs to be post-processed, otherwise it could create
a violation of physical constraints (e.g. the predicted value of
power drawn from the storage is greater than the power that
the storage can offer). In that case, the value is corrected and
set equal to the limit that it crossed (e.g. the power drawn
from the storage becomes equal to the maximum power that
the storage can offer).

C. Applying the learned strategies in different load, solar
production and prices configurations

A new set of load profile time series L(i)
P,t, t ∈ {1, . . . , T}

and maximal production potentials time series P (i),max
P,t , t ∈

{1, . . . , T}, associated with a new time series of price vectors
φt, t ∈ {1, . . . , T} are generated for each prosumer i ∈
{1, . . . , N}. Starting from the initial time step, at every t, the
required inputs are passed to the regressors for each prosumer
and the outputs (after a post-processing step) are used to set
the value of their actions. The power flow problem is solved
every time to check the voltages, the net power exchanged
with the main grid and respect of the physical constraints.

D. Empirical illustration

In this section, we compare the performance of the learned
strategies in a deterministic setting with two other strategies:
(i) the centralised optimised strategy as defined in [3], and
(ii) another decentralised strategy relying on a predetermined,
thresholds-based, decision rule. This second decentralised
strategy is designed so that it ensures the safety of the system,
and then, tries to restrain the overall costs of the community.
The first point of this second decentralised algorithm is, thus,
to check if there is a risk of overvoltages or undervoltages
at the bus and, in this case, to orient the actions of that
prosumer to avoid it (fully charging/discharging the storage
and maximising/minimising the power production). In the case
where the safety of the grid seems ensured, the decisions are
imposed based on the price of the electricity at that time
step (when it is above/under a predetermined price, impose
a predetermined prosumer’s action). It is certainly simplistic,
but it has the merit of providing a comparison base. Details
about this decision rule can be found in Appendix.

As a comparison metric, we consider the overall costs that
the community incurs (in the same overall environment, i.e.
same loads, solar production, PV and batteries sizes, prices)
exchanging power with the main grid during an entire year
(T = 8760, one time-step per hour during one year). The
comparison is made in an environment where loads, solar
production and prices are not the same as the one from which
the learned strategies were built. As expected, the centralised
model is able to achieve the lowest costs, equal to 641.70 e. If
we adopt the predicted actions made by the learned regressors,
the community meets a total cost of 1549.70 e, a result that
seems expensive when compared to the centralised model one,
but it becomes remarkable when we consider that the ”rule of
thumb” algorithm produces an expense equal to 3276 e.

VIII. ONE STEP FURTHER: TAKING INTO ACCOUNT THE
THREE PHASES

The mathematical formalisation presented in this paper
considers a balanced operation of the network. Indeed, the
power exchanges between the prosumers do not take into con-
sideration the phase to which they are connected. It considers
only one value for active and reactive power per dwelling.
However, low-voltage distribution networks are intrinsically
unbalanced because even if a prosumer has a three-phase
connection to the grid, house appliances are mainly single
phase. Our concern is the relevance of exchanging powers
between members of the electricity community, that are not
connected to the same phase. Physically, current from the
DER would flow to the distribution transformer and out of
the community while current to supply the load would flow
from the distribution transformer. While this may reduce the
losses to some extent because power does not flow from
the transmission network, controlling the community in this
fashion could further unbalance the network, and result in
the violation of voltage constraints and a reduction of the
hosting capacity of the network. One solution would be to
divide the community into three groups: one per phase and



prosumers that have a three-phase connection would belong
to the three groups. This would allow the application of the
same formalism and would ensure that exchange of powers
takes place solely between prosumers that are connected to
the same phase.

IX. CONCLUSION

This paper proposes a mathematical framework for mod-
elling energy exchanges between prosumers. In particular, it
allows formalising a family of optimisation problems, de-
pending on the target objective (maximising green production,
minimising losses, optimising revenues), and also on the
structure of the control strategies (centralised or decentralised).
In particular, we have proposed a machine learning approach
whose objective is to mimic, at an individual level (i.e., using
local measurements only), a behaviour that is optimal at the
community level. First empirical results show that, even after
a post-processing phase so that it satisfies physical constraints,
the learning approach still performs better than predetermined
strategies targeting safety first, then cost minimisation.

Future work includes designing decentralized strategies
relying on other data-based approaches, in particular, we
think Reinforcement Learning (RL) [14] could be a powerful
paradigm to learn decentralised strategies, mainly because RL
agents have the characteristic to self-improve over time with
new data acquisition.

APPENDIX

We define η(i)c as the charge efficiency and η(i)d as the dis-
charge efficiency of the storage of prosumer i ∈ {1, . . . , N}.
We set arbitrary values for φ− and φ+, that are thresholds,
respectively, for what can be considered a low price and an
high price for electricity. At every time-step t ∈ {0, . . . , T−1}
and for each prosumer i ∈ {1, . . . , N} the ”rule of thumb”
algorithm used in Section VII is structured as follows:
if |v(i)

t | 6 0.91pu

P
(i)
P,t = P

(i),max
P,t

P
(i)
Q,t = P

(i),max
Q,t

S
(i)
t = −λ(i)

t η
(i)
d

else if |v(i)
t | > 1.09pu

P
(i)
P,t = 0

P
(i)
Q,t = −P (i),max

Q,t

S
(i)
t =

λ
(i),max
t −λ(i)t

η
(i)
c

else
P

(i)
P,t = P

(i),max
P,t

P
(i)
Q,t = 0

if φt > φ+

if P (i)
P,t > L

(i)
P,t

if λ(i)
t > 0.3 λ

(i),max
t

S
(i)
t = −

(
λ
(i)
t − 0.3 λ

(i),max
t

)
η
(i)
d

else
S

(i)
t = 0

else
S

(i)
t = −λ(i)

t η
(i)
d

else if φt 6 φ−

if P (i)
P,t > L

(i)
P,t

if P (i)
P,t − L

(i)
P,t 6

(
λ
(i),max
t − λ(i)

t

)
η(i)c

S
(i)
t =

P
(i)
P,t

−L(i)
P,t

η
(i)
c

else

S
(i)
t =

λ
(i),max
t −λ(i)t

η
(i)
c

else
if λ(i)

t > 0.3 λ
(i),max
t

S
(i)
t = −

(
λ
(i)
t − 0.3 λ

(i),max
t

)
η
(i)
d

else

S
(i)
t =

0.3 λ
(i),max
t −λ(i)t
η
(i)
c

if S(i)
t > S

(i),max
t

S
(i)
t = S

(i),max
t

if S(i)
t < −S(i),max

t

S
(i)
t = −S(i),max

t
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