Forseeing New Control Challenges in Electricity Prosumer Communities

Frédéric Olivier, University of Liège, Belgium
Daniele Marulli, Politecnico di Torino, Italy
Damien Ernst, University of Liège, Belgium
Raphaël Fonteneau, University of Liège, Belgium
Introduction

• Electricity Prosumer Community
 • Distributed generation
 • Storage
 • Information technologies

• Objectives
 • Propose a rigorous mathematical framework for studying energy prosumer communities
 • Present a new class of interesting control problems and challenges, to increase the hosting capacity of LV networks.
Outline

- The Electricity Prosumer Community
- Formalisation
- Control challenges
- Centralized vs distributed schemes
The electricity prosumer community

• Definition

Electricity distribution system containing loads and distributed energy resources (such as distributed generators, storage devices, or controllable loads), that can be operated in a controlled, coordinated way.
The electricity prosumer community

• Similar to microgrids
• Cannot operate in island mode
• Comprises consumers cooperating for the satisfaction of their energy needs using local production sources
The electricity prosumer community

- Drivers
 - With a shared infrastructure between the members
 - Without a shared infrastructure
 - Network operation
 - Energy market

Communities extend the perimeter of self-consumption from one prosumer to several to pool production and flexibility means.
Formalisation - The prosumer

- **Production**: Active and reactive power production
- **Storage**: Active power stored, Level of charge
- **Load**: Active and reactive power consumption
- **Network**: Active and reactive power injected into the distribution network
Formalisation – The community

- Power exchanges between prosumers
- Losses equal to the difference between the houses and the root of the community
Formalisation

• Cost and revenues for each prosumer
 • Price between each member of the community
 • Price for electricity from the distribution network

• Community behaviour
 • Discrete time setting
 • For each time step, the variables change as a function of the previous states and exogenous variables, with some uncertainty
Control challenges

- Decision making problems
- Maximising the distributed production
 - And increase the network’s hosting capacity
 - And limit losses
- Optimising overall costs and revenues
 - Minimise the total electricity bill of the community
Centralised vs distributed

Requirements

- Inverters that are controllable in active and reactive power
 - Controllable loads can be considered
 - Voltage et power measurements
- Model of the network
- Extensive communication
 - Centralised computer/controller
- No model
- No or little communication
Distributed schemes

• Generating a data set using multiperiod OPF
 • Different load patterns, PV production profiles, prices
• Learning regressors using Extremely Randomized Trees
• Constraining the prediction
• Simulating the behaviour of the agents

<table>
<thead>
<tr>
<th>Community electricity bill compared to a distributed rule of thumb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centralised (FBS-OPF)</td>
</tr>
<tr>
<td>Distributed (Rule of thumb)</td>
</tr>
<tr>
<td>Distributed (Extra trees)</td>
</tr>
</tbody>
</table>
Conclusion

• In the paper:
 • Mathematical framework for modelling Electricity Prosumer Communities and energy exchanges between prosumers
 • Introduction of a distributed approach using machine learning

• Future work:
 • Using reinforcement learning for agent self-improvement