Khan AU, Nordmann P. Spread of carbapenemase NDM-1 producers: the situation in India and what may be proposed. Scand J Infect Dis. 2012; 44(7):531–5. https://doi.org/10.3109/00365548.2012.669046 PMID: 22497308
da Silva RM, Traebert J, Galato D. Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae: a review of epidemiological and clinical aspects. Expert opinion on biological therapy. 2012; 12(6):663–71. https://doi.org/10.1517/14712598.2012.681369 PMID: 22506862
Canton R, Coque TM. The CTX-M β-lactamase pandemic. Curr Opin Microbiol. 2006; 9(5):466–75. https://doi.org/10.1016/j.mib.2006.08.011 PMID: 16942899
Gutkind GO, Di Conza J, Power P, Radice M. β-Lactamase-mediated resistance: a biochemical, epidemiological and genetic overview. Curr Pharm Des. 2013; 19(2):164–208. PMID: 22894615
Poirel L, Naas T, Nordmann P. Diversity, epidemiology, and genetics of class D β-lactamases. Antimicrob Agents Chemother. 2010; 54(1):24–38. https://doi.org/10.1128/AAC.01512-08 PMID: 19721065
Opazo A, Dominguez M, Bello H, Amyes SG, Gonzalez-Rocha G. OXA-type carbapenemases in Acine-tobacter baumannii in South America. J Infect Dev Ctries. 2012; 6(4):311–6. PMID: 22505439
Nordmann P, Naas T, Poirel L. Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2011; 17(10):1791–8. https://doi.org/10.3201/eid1710.110655 PMID: 22000347
Daiyasu H, Osaka K, Ishino Y, Toh H. Expansion of the zinc metallo-hydrolase family of the β-lactamase fold. FEBS Lett. 2001; 503(1):1–6. PMID: 11513844
Bebrone C. Metallo-β-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Biochem Pharmacol. 2007; 74(12):1686–701. https://doi.org/10.1016/j.bcp.2007.05.021 PMID: 17597585
Galleni M, Lamotte-Brasseur J, Rossolini GM, Spencer J, Dideberg O, Frere JM. Standard numbering scheme for class B β-lactamases. Antimicrob Agents Chemother. 2001; 45(3):660–3. https://doi.org/10.1128/AAC.45.3.660-663.2001 PMID: 11181339
Palzkill T. Metallo-β-lactamase structure and function. Ann N Y Acad Sci. 2013; 1277:91–104. https://doi.org/10.1111/j.1749-6632.2012.06796.x PMID: 23163348
Bonnet R. Growing group of extended-spectrum β-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother. 2004; 48(1):1–14. https://doi.org/10.1128/AAC.48.1.1-14.2004 PMID: 14693512
Humeniuk C, Arlet G, Gautier V, Grimont P, Labia R, Philippon A. β-Lactamases of Kluyvera ascorbata, probable progenitors of some plasmid-encoded CTX-M types. Antimicrob Agents Chemother. 2002; 46 (9):3045–9. https://doi.org/10.1128/AAC.46.9.3045-3049.2002 PMID: 12183268
Olson AB, Silverman M, Boyd DA, McGeer A, Willey BM, Pong-Porter V, et al. Identification of a progenitor of the CTX-M-9 group of extended-spectrum β-lactamases from Kluyvera georgiana isolated in Guyana. Antimicrob Agents Chemother. 2005; 49(5):2112–5. https://doi.org/10.1128/AAC.49.5.21122115.2005 PMID: 15855541
Poirel L, Kampfer P, Nordmann P. Chromosome-encoded Ambler class A β-lactamase of Kluyvera georgiana, a probable progenitor of a subgroup of CTX-M extended-spectrum β-lactamases. Antimicrob Agents Chemother. 2002; 46(12):4038–40. https://doi.org/10.1128/AAC.46.12.4038-4040.2002PMID: 12435721
Rodriguez MM, Power P, Radice M, Vay C, Famiglietti A, Galleni M, et al. Chromosome-encoded CTX-M-3 from Kluyvera ascorbata: a possible origin of plasmid-borne CTX-M-1-derived cefotaximases. Antimicrob Agents Chemother. 2004; 48(12):4895–7. https://doi.org/10.1128/AAC.48.12.4895-4897.2004PMID: 15561876
Rodriguez MM, Power P, Sader H, Galleni M, Gutkind G. Novel chromosome-encoded CTX-M-78 β-lactamase from a Kluyvera georgiana clinical isolate as a putative origin of CTX-M-25 subgroup. Antimicrob Agents Chemother. 2010; 54:3070–1. https://doi.org/10.1128/AAC.01615-09 PMID: 20421403
Gudeta DD, Bortolaia V, Amos G, Wellington EM, Brandt KK, Poirel L, et al. The soil microbiota harbors a diversity of carbapenem-hydrolyzing β-lactamases of potential clinical relevance. Antimicrob Agents Chemother. 2015; 60(1):151–60. https://doi.org/10.1128/AAC.01424-15 PMID: 26482314
D’Costa VM, McGrann KM, Hughes DW, Wright GD. Sampling the antibiotic resistome. Science (New York, NY. 2006; 311(5759):374–7. https://doi.org/10.1126/science.1120800 PMID: 16424339
Wright GD. The antibiotic resistome. Expert Opin Drug Discov. 2010; 5(8):779–88. https://doi.org/10.1517/17460441.2010.497535 PMID: 22827799
Galan JC, Gonzalez-Candelas F, Rolain JM, Canton R. Antibiotics as selectors and accelerators of diversity in the mechanisms of resistance: from the resistome to genetic plasticity in the β-lactamases world. Front Microbiol. 2013; 4:9. https://doi.org/10.3389/fmicb.2013.00009 PMID: 23404545
Handelsman J, Liles M, Mann D, Riesenfeld C, Goodman RM. Cloning the metagenome: culture-independent access to the diversity and functions of the uncultivated microbial world. Methods in Microbiology—Functional Microbial Genomics: Academic Press; 2002. p. 241–55.
Rondon MR, Raffel SJ, Goodman RM, Handelsman J. Toward functional genomics in bacteria: analysis of gene expression in Escherichia coli from a bacterial artificial chromosome library of Bacillus cereus. PNAS USA. 1999; 96(11):6451–5. PMID: 10339608
Handelsman J. Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev. 2004; 68(4):669–85. https://doi.org/10.1128/MMBR.68.4.669-685.2004 PMID: 15590779
Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J. Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol. 8(4):251–9. https://doi.org/10.1038/nrmicro2312 PMID: 20190823
Kazimierczak KA, Rincon MT, Patterson AJ, Martin JC, Young P, Flint HJ, et al. A new tetracycline efflux gene, tet(40), is located in tandem with tet(O/32/O) in a human gut firmicute bacterium and in metagenomic library clones. Antimicrob Agents Chemother. 2008; 52(11):4001–9. https://doi.org/10.1128/AAC.00308-08 PMID: 18779355
Riesenfeld CS, Goodman RM, Handelsman J. Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ Microbiol. 2004; 6(9):981–9. https://doi.org/10.1111/j.1462-2920.2004.00664.x PMID: 15305923
Diaz-Torres ML, Villedieu A, Hunt N, McNab R, Spratt DA, Allan E, et al. Determining the antibiotic resistance potential of the indigenous oral microbiota of humans using a metagenomic approach. FEMS Microbiol Let. 2006; 258(2):257–62.
Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MO, Dantas G. The shared antibiotic resistome of soil bacteria and human pathogens. Science (New York, NY. 2012; 337(6098):1107–11. https://doi.org/10.1126/science.1220761 PMID: 22936781
Harvey R, Funk J, Wittum TE, Hoet AE. A metagenomic approach for determining prevalence of tetracycline resistance genes in the fecal flora of conventionally raised feedlot steers and feedlot steers raised without antimicrobials. Am J Vet Res. 2009; 70(2):198–202. https://doi.org/10.2460/ajvr.70.2.198 PMID: 19231951
Seville LA, Patterson AJ, Scott KP, Mullany P, Quail MA, Parkhill J, et al. Distribution of tetracycline and erythromycin resistance genes among human oral and fecal metagenomic DNA. Microb Drug Resist. 2009; 15(3):159–66. https://doi.org/10.1089/mdr.2009.0916 PMID: 19728772
Allen HK, Moe LA, Rodbumrer J, Gaarder A, Handelsman J. Functional metagenomics reveals diverse β-lactamases in a remote Alaskan soil. ISME J. 2009; 3(2):243–51. https://doi.org/10.1038/ismej.2008.86 PMID: 18843302
Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twenty-third informational supplement M100-S22. 33. Wayne, PA, USA: Clinical and Laboratory Standards Institute; 2013.
Power P, Radice M, Barberis C, de Mier C, Mollerach M, Maltagliatti M, et al. Cefotaxime-hydrolysing β-lactamases in Morganella morganii. Eur J Clin Microbiol Infect Dis. 1999; 18(10):743–7. PMID: 10584905
Segel IH. Enzyme kinetics, behavior and analysis of rapid equilibrium and steady-state enzyme systems. New York, N.Y.: John Wiley & Sons, Inc.; 1975. 210–2.
De Meester F, Joris B, Reckinger G, Bellefroid-Bourguignon C, Frere JM, Waley SG. Automated analysis of enzyme inactivation phenomena. Application to β-lactamases and DD-peptidases. Biochem Pharmacol. 1987; 36(14):2393–403. PMID: 3038122
Kabsch W. XDS. Acta Crystallogr D Biol Crystallogr. 2010; 66:125–32. https://doi.org/10.1107/S0907444909047337 PMID: 20124692
Kabsch W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr D Biol Crystallogr. 2010; 66:133–44. https://doi.org/10.1107/S0907444909047374 PMID: 20124693
CCP4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr. 1994; 50(Pt 5):760–3. https://doi.org/10.1107/S0907444994003112 PMID: 15299374
Murshudov GN, Vagin AA, Dodson EJ. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr. 1997; 53(Pt 3):240–55. https://doi.org/10.1107/S0907444996012255 PMID: 15299926
Painter J, Merritt EA. Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Crystallogr D Biol Crystallogr. 2006; 62(Pt 4):439–50. https://doi.org/10.1107/S0907444906005270 PMID: 16552146
Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004; 60:2126–32. https://doi.org/10.1107/S0907444904019158 PMID: 15572765
Schrödinger L. The PyMOL Molecular Graphics System. 1.5.0.4 ed.
Laskowski RA. Enhancing the functional annotation of PDB structures in PDBsum using key figures extracted from the literature. Bioinformatics. 2007; 23(14):1824–7. https://doi.org/10.1093/bioinformatics/btm085 PMID: 17384425
Oliveira SH, Ferraz FA, Honorato RV, Xavier-Neto J, Sobreira TJ, de Oliveira PS. KVFinder: steered identification of protein cavities as a PyMOL plugin. BMC Bioinformatics. 2014; 15:197. https://doi.org/10.1186/1471-2105-15-197 PMID: 24938294
Bellais S, Aubert D, Naas T, Nordmann P. Molecular and biochemical heterogeneity of class B carbape-nem-hydrolyzing β-lactamases in Chryseobacterium meningosepticum. Antimicrob Agents Chemother. 2000; 44(7):1878–86. PMID: 10858348
Moran-Barrio J, Lisa MN, Larrieux N, Drusin SI, Viale AM, Moreno DM, et al. Crystal structure of the metallo-β-lactamase GOB in the periplasmic dizinc form reveals an unusual metal site. Antimicrob Agents Chemother. 2016; 60(10):6013–22. https://doi.org/10.1128/AAC.01067-16 PMID: 27458232
Garcia-Saez I, Mercuri PS, Papamicael C, Kahn R, Frere JM, Galleni M, et al. Three-dimensional structure of FEZ-1, a monomeric subclass B3 metallo-β-lactamase from Fluoribacter gormanii, in native form and in complex with D-captopril. J Mol Biol. 2003; 325(4):651–60. PMID: 12507470
Stoczko M, Frere JM, Rossolini GM, Docquier JD. Postgenomic scan of metallo-β-lactamase homo-logues in rhizobacteria: identification and characterization of BJP-1, a subclass B3 ortholog from Bra-dyrhizobium japonicum. Antimicrob Agents Chemother. 2006; 50(6):1973–81. https://doi.org/10.1128/AAC.01551-05 PMID: 16723554
Segatore B, Massidda O, Satta G, Setacci D, Amicosante G. High specificity of cphA-encoded metallo-β-lactamase from Aeromonas hydrophila AE036 for carbapenems and its contribution to β-lactam resistance. Antimicrob Agents Chemother. 1993; 37(6):1324–8. PMID: 8328781
Moran-Barrio J, Gonzalez JM, Lisa MN, Costello AL, Peraro MD, Carloni P, et al. The metallo-β-lactamase GOB is a mono-Zn(II) enzyme with a novel active site. J Biol Chem. 2007; 282(25):18286–93. https://doi.org/10.1074/jbc.M700467200 PMID: 17403673
Mercuri PS, Bouillenne F, Boschi L, Lamotte-Brasseur J, Amicosante G, Devreese B, et al. Biochemical characterization of the FEZ-1 metallo-β-lactamase of Legionella gormanii ATCC 33297T produced in Escherichia coli. Antimicrob Agents Chemother. 2001; 45(4):1254–62. https://doi.org/10.1128/AAC.45.4.1254-1262.2001 PMID: 11257043
Docquier JD, Pantanella F, Giuliani F, Thaller MC, Amicosante G, Galleni M, et al. CAU-1, a subclass B3 metallo-β-lactamase of low substrate affinity encoded by an ortholog present in the Caulobacter crescentus chromosome. Antimicrob Agents Chemother. 2002; 46(6):1823–30. https://doi.org/10.1128/AAC.46.6.1823-1830.2002 PMID: 12019096
Carfi A, Pares S, Duee E, Galleni M, Duez C, Frere JM, et al. The 3-D structure of a zinc metallo-β-lactamase from Bacillus cereus reveals a new type of protein fold. EMBO J. 1995; 14(20):4914–21. PMID: 7588620
Docquier JD, Benvenuti M, Calderone V, Stoczko M, Menciassi N, Rossolini GM, et al. High-resolution crystal structure of the subclass B3 metallo-β-lactamase BJP-1: rational basis for substrate specificity and interaction with sulfonamides. Antimicrob Agents Chemother. 2010; 54(10):4343–51. https://doi.org/10.1128/AAC.00409-10 PMID: 20696874
Benvenuti M, Mangani S. Crystallization of soluble proteins in vapor diffusion for X-ray crystallography. Nat Protoc. 2007; 2(7):1633–51. https://doi.org/10.1038/nprot.2007.198 PMID: 17641629
Wachino J, Yamaguchi Y, Mori S, Kurosaki H, Arakawa Y, Shibayama K. Structural insights into the subclass B3 metallo-β-lactamase SMB-1 and the mode of inhibition by the common metallo-β-lactamase inhibitor mercaptoacetate. Antimicrob Agents Chemother. 2013; 57(1):101–9. https://doi.org/10.1128/AAC.01264-12 PMID: 23070156
Ullah JH, Walsh TR, Taylor IA, Emery DC, Verma CS, Gamblin SJ, et al. The crystal structure of the L1 metallo-β-lactamase from Stenotrophomonas maltophilia at 1.7 Å resolution. J Mol Biol. 1998; 284 (1):125–36. https://doi.org/10.1006/jmbi.1998.2148 PMID: 9811546
Lisa MN, Moran-Barrio J, Guindon MF, Vila AJ. Probing the role of Met221 in the unusual metallo-β-lactamase GOB-18. Inorg Chem. 2012; 51:12419–25. https://doi.org/10.1021/ic301801h PMID: 23113650