Thermal desorption comprehensive two-dimensional gas chromatography coupled to variable-energy electron ionization time-of-flight mass spectrometry for monitoring subtle changes in volatile organic compound profiles of human blood
Dubois, Lena ; Université de Liège > Département de chimie (sciences) > Chimie analytique, organique et biologique
Perrault, Katelynn ; Université de Liège > Département de chimie (sciences) > Chimie analytique, organique et biologique
Stefanuto, Pierre-Hugues ; Université de Liège > Département de chimie (sciences) > Chimie analytique, organique et biologique
Koschinski, Stefan; Markes International GmbH
Edwards, Matthew; Markes International Ltd.
McGregor, Laura; Markes International Ltd.
Focant, Jean-François ; Université de Liège > Département de chimie (sciences) > Chimie analytique, organique et biologique
Language :
English
Title :
Thermal desorption comprehensive two-dimensional gas chromatography coupled to variable-energy electron ionization time-of-flight mass spectrometry for monitoring subtle changes in volatile organic compound profiles of human blood
[1] Andrasko, J., Norberg, T., Ståhling, S., Time since discharge of shotguns. J. Forensic Sci., 43, 1998, 14349J.
[2] Harper, R.J., Almirall, J.R., Furton, K.G., Identification of dominant odor chemicals emanating from explosives for use in developing optimal training aid combinations and mimics for canine detection. Talanta 67 (2005), 313–3327.
[4] Virkler, K., Lednev, I.K., Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Sci. Int. 188 (2009), 1–17.
[5] Rust, L., Nizio, K.D., Forbes, S.L., The influence of ageing and surface type on the odour profile of blood-detection dog training aids. Anal. Bioanal. Chem. 408 (2016), 6349–6360.
[6] Hoffman, E.M., Curran, A.M., Dulgerian, N., Stockham, R.A., Eckenrode, B.A., Characterization of the volatile organic compounds present in the headspace of decomposing human remains. Forensic Sci. Int. 186 (2009), 6–13.
[7] Statheropoulos, M., Sianos, E., Agapiou, A., Georgiadou, A., Pappa, A., Tzamtzis, N., Giotaki, H., Papageorgiou, C., Kolostoumbis, D., Preliminary investigation of using volatile organic compounds from human expired air, blood and urine for locating entrapped people in earthquakes. J. Chromatogr. B 822 (2005), 112–117.
[8] Mochalski, P., King, J., Klieber, M., Unterkofler, K., Hinterhuber, H., Baumann, M., Amann, A., Blood and breath levels of selected volatile organic compounds in healthy volunteers. Analyst 138 (2013), 2134–2145.
[10] Perrault, K.A., Nizio, K.D., Forbes, S.L., A comparison of one-dimensional and comprehensive two-dimensional gas chromatography for decomposition odour profiling using inter-year replicate field trials. Chromatographia 78 (2015), 1057–1070.
[11] Blount, B.C., Kobelski, R.J., McElprang, D.O., Ashley, D.L., Morrow, J.C., Chambers, D.M., Cardinali, F.L., Quantification of 31 volatile organic compounds in whole blood using solid-phase microextraction and gas chromatography–mass spectrometry. J. Chromatogr. B 832 (2006), 292–301.
[12] Mondello, L., Tranchida, P.Q., Dugo, P., Dugo, G., Comprehensive two-dimensional gas chromatography–mass spectrometry: a review. Mass Spectrom. Rev. 27 (2008), 101–124.
[13] Dimandja, J.M.D., Clouden, G.C., Colón, I., Focant, J.F., Cabey, W.V., Parry, R.C., Standardized test mixture for the characterization of comprehensive two-dimensional gas chromatography columns: the Phillips mix. J. Chromatogr. A 1019 (2003), 261–272.
[14] Russell, D.H., Edmondson, R.D., High-resolution mass spectrometry and accurate mass measurements with emphasis on the characterization of peptides and proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Mass Spectrom. 32 (1997), 263–276.
[15] Ieda, T., Ochiai, N., Miyawaki, T., Ohura, T., Horii, Y., Environmental analysis of chlorinated and brominated polycyclic aromatic hydrocarbons by comprehensive two-dimensional gas chromatography coupled to high-resolution time-of-flight mass spectrometry. J. Chromatogr. A 1218 (2011), 3224–3232.
[16] Stefanuto, P.-H., Perrault, K., Grabherr, S., Varlet, V., Focant, J.-F., Postmortem internal gas reservoir monitoring using GCxGC-HRTOF-MS. Separations 3 (2016), 24–37.
[17] Perrault, K., Stefanuto, P.-H., Dubois, L., Cnuts, D., Rots, V., Focant, J.-F., A new approach for the characterization of organic residues from stone tools using GCxGC-TOFMS. Separations, 3, 2016, 16.
[18] Gross, J.H., Mass Spectrometry: A Textbook. second ed., 2011, Springer.
[19] Alam, M.S., Stark, C., Harrison, R.M., Using variable ionization energy time-of-flight mass spectrometry with comprehensive GCxGC to identify isomeric species. Anal. Chem. 88 (2016), 4211–4220.
[20] Patterson, D.G., Welch, S.M., Turner, W.E., Sjödin, A., Focant, J.-F., Cryogenic zone compression for the measurement of dioxins in human serum by isotope dilution at the attogram level using modulated gas chromatography coupled to high resolution magnetic sector mass spectrometry. J. Chromatogr. A 1218 (2011), 3274–3281.
[21] Harynuk, J., Górecki, T., New liquid nitrogen cryogenic modulator for comprehensive two-dimensional gas chromatography. J. Chromatogr. A 1019 (2003), 53–63.
[22] Seeley, J.V., Kramp, F., Hicks, C.J., Comprehensive two-dimensional gas chromatography via differential flow modulation. Anal. Chem. 72 (2000), 4346–4352.
[23] Griffith, J.F., Winniford, W.L., Sun, K., Edam, R., Luong, J.C., A reversed-flow differential flow modulator for comprehensive two-dimensional gas chromatography. J. Chromatogr. A 1226 (2012), 116–123.
[24] Duhamel, C., Cardinael, P., Peulon-Agasse, V., Firor, R., Pascaud, L., Semard-Jousset, G., Giusti, P., Livadaris, V., Comparison of cryogenic and differential flow (forward and reverse fill/flush) modulators and applications to the analysis of heavy petroleum cuts by high-temperature comprehensive gas chromatography. J. Chromatogr. A 1387 (2015), 95–103.
[26] Johnson, K.J., Synovec, R.E., Pattern recognition of jet fuels: comprehensive GCxGC with ANOVA-based feature selection and principal component analysis. Chemom. Intell. Lab. Syst. 60 (2002), 225–237.
[27] Pierce, K.M., Hoggard, J.C., Hope, J.L., Rainey, P.M., Hoofnagle, A.N., Jack, R.M., Wright, B.W., Synovec, R.E., Fisher ratio method applied to third-order separation data to identify significant chemical components of metabolite extracts. Anal. Chem. 78 (2006), 5068–5075.
[28] Brokl, M., Bishop, L., Wright, C.G., Liu, C., McAdam, K., Focant, J.-F., Multivariate analysis of mainstream tobacco smoke particulate phase by headspace solid-phase micro extraction coupled with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. J. Chromatogr. A 1370 (2014), 216–229.
[29] Stefanuto, P.-H., Perrault, K., Stadler, S., Pesesse, R., Brokl, M., Forbes, S., Focant, J.-F., Reading cadaveric decomposition chemistry with a new pair of glasses. ChemPlusChem 79 (2014), 786–789.
[30] Ramos, L., Brinkman, U., Multidimensionality in Gas Chromatography: General Concepts. 2009, Elsevier.
[31] Perrault, K.A., Stefanuto, P.-H., Stuart, B.H., Rai, T., Focant, J.-F., Forbes, S.L., Reducing variation in decomposition odour profiling using comprehensive two-dimensional gas chromatography. J. Sep. Sci. 38 (2015), 73–80.
[32] Forbes, S.L., Perrault, K.A., Stefanuto, P.-H., Nizio, K.D., Focant, J.-F., Comparison of the decomposition VOC profile during winter and summer in a moist, mid-latitude (Cfb) climate. PLoS One, 9, 2014, e113681.
[33] Focant, J.-F., Stefanuto, P., Brasseur, C., Dekeirsschieter, J., Haubruge, E., Schotsmans, E., Wilson, A., Stadler, S., Forbes, S., Forensic cadaveric decomposition profiling by GCxGC-TOFMS analysis of VOCs. Chem. Bull. Kazakh Natl. Univ. 4 (2013), 177–186.
[34] Brattoli, M., Cisternino, E., Rosario Dambruoso, P., de Gennaro, G., Giungato, P., Mazzone, A., Palmisani, J., Tutino, M., Gas chromatography analysis with olfactometric detection (GC-O) as a useful methodology for chemical characterization of odorous compounds. Sensors 13 (2013), 16759–16800.
[35] van der Werf, I.D., Aresta, A., Truică, G.I., Radu, G.L., Palmisano, F., Sabbatini, L., A quasi non-destructive approach for amber geological provenance assessment based on head space solid-phase microextraction gas chromatography–mass spectrometry. Talanta 119 (2014), 435–439.
[36] Song, G., Qin, T., Liu, H., Xu, G.-B., Pan, Y.-Y., Xiong, F.-X., Gu, K.-S., Sun, G.-P., Chen, Z.-D., Quantitative breath analysis of volatile organic compounds of lung cancer patients. Lung Cancer 67 (2010), 227–231.
[37] Nizio, K.D., Perrault, K.A., Troobnikoff, A.N., Ueland, M., Shoma, S., Iredell, J.R., Middleton, P.G., Forbes, S.L., In vitro volatile organic compound profiling using GCxGC-TOFMS to differentiate bacteria associated with lung infections: a proof-of-concept study. J. Breath Res., 10, 2016, 26008.
[38] Mochalski, P., Krapf, K., Ager, C., Wiesenhofer, H., Agapiou, A., Statheropoulos, M., Fuchs, D., Ellmerer, E., Buszewski, B., Amann, A., Temporal profiling of human urine VOCs and its potential role under the ruins of collapsed buildings. Toxicol. Mech. Methods 22 (2012), 502–511.
[39] Sparkman, O.D., Penton, Z., Kitson, F.G., Gas Chromatography and Mass Spectrometry: A Practical Guide. 2011, Academic Press.
[40] Forbes, S.L., Rust, L., Trebilcock, K., Perrault, K.A., McGrath, L.T., Effect of age and storage conditions on the volatile organic compound profile of blood. Forensic Sci. Med. Pathol. 10 (2014), 570–582.
[41] Agapiou, A., Amann, A., Mochalski, P., Statheropoulos, M., Thomas, C.L.P., Trace detection of endogenous human volatile organic compounds for search, rescue and emergency applications. Trends Anal. Chem. 66 (2015), 158–175.
[42] Silverstein, K.J.D., Robert, M., Francis, Webster X., Spectrometric Identification of Organic Compounds. seventh ed., 2005, John Wiley and Sons.
[43] Harrison, A.G., Chemical Ionization Mass Spectrometry. 1992, CRC Press.
[44] Watson, J.T., Sparkman, O.D., Introduction to Mass Spectrometry: Instrumentation, Applications and Strategies for Data Interpretation. 2007, John Wiley & Sons.
[45] Stefanuto, P.-H., Perrault, K.A., Stadler, S., Pesesse, R., LeBlanc, H.N., Forbes, S.L., Focant, J.-F., GCxGC-TOFMS and supervised multivariate approaches to study human cadaveric decomposition olfactive signatures. Anal. Bioanal. Chem. 407 (2015), 4767–4778.
[46] Zhang, W., Zhu, S., He, S., Wang, Y., Screening of oil sources by using comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry and multivariate statistical analysis. J. Chromatogr. A 1380 (2015), 162–170.
[47] DeGreeff, L.E., Weakley-Jones, B., Furton, K.G., Creation of training aids for human remains detection canines utilizing a non-contact, dynamic airflow volatile concentration technique. Forensic Sci. Int. 217 (2012), 32–38.