Nys, Gwenaël ; Université de Liège > Département de pharmacie > Analyse des médicaments
Gallez, Anne ; Université de Liège > Département des sciences biomédicales et précliniques > Département des sciences biomédicales et précliniques
Kok, Miranda ; Université de Liège > Département de pharmacie > Analyse des médicaments
COBRAIVILLE, Gaël ; Centre Hospitalier Universitaire de Liège - CHU > Service de rhumatologie
Servais, Anne-Catherine ; Université de Liège > Département de pharmacie > Analyse des médicaments
Piel, Géraldine ; Université de Liège > Département de pharmacie > Pharmacie galénique
Pequeux, Christel ✱; Université de Liège > Département des sciences biomédicales et précliniques > Département des sciences biomédicales et précliniques
Fillet, Marianne ✱; Université de Liège > Département de pharmacie > Analyse des médicaments
✱ These authors have contributed equally to this work.
Language :
English
Title :
Whole blood microsampling for the quantitation of estetrol without derivatization by liquid chromatography-tandem mass spectrometry
[1] Grady, D., Wenger, N.K., Herrington, D., Khan, S., Furberg, C., Hunninghake, D., Vittinghoff, E., Hulley, S., Postmenopausal hormone therapy increases risk for venous thromboembolic disease: the Heart and Estrogen/Progestin Replacement Study. Ann. Intern. Med. 132:9 (2000), 689–696.
[2] Hagen, A., Barr, M., Diczfalusy, E., Metabolism of 17β-oestradiol-4-14C in early infancy. Acta Endocrinol. 49:2 (1965), 207–220.
[3] Schwers, J., Eriksson, G., Wiqvist, N., Diczfalusy, E., 15α-Hydroxylation: a new pathway of estrogen metabolism in the human fetus and newborn. Biochim. Biophys. Acta 100:1 (1965), 313–316.
[4] Coelingh Bennink, H.J., Holinka, C.F., Diczfalusy, E., Estetrol review: profile and potential clinical applications. Climacteric 11:Suppl. 1 (2008), 47–58.
[5] Visser, M., Coelingh Bennink, H.J., Clinical applications for estetrol. J. Steroid Biochem. Mol. Biol. 114:1–2 (2009), 85–89.
[6] Gerard, C., Blacher, S., Communal, L., Courtin, A., Tskitishvili, E., Mestdagt, M., Munaut, C., Noel, A., Gompel, A., Pequeux, C., Foidart, J.M., Estetrol is a weak estrogen antagonizing estradiol-dependent mammary gland proliferation. J. Endocrinol. 224:1 (2015), 85–95.
[7] Gérard, C., Blacher, S., Communal, L., Courtin, A., Tskitishvili, E., Mestdagt, M., Munaut, C., Noel, A., Gompel, A., Péqueux, C., Estetrol is a weak estrogen antagonizing estradiol-dependent mammary gland proliferation. J. Endocrinol. 224:1 (2015), 85–95.
[8] Mawet, M., Maillard, C., Klipping, C., Zimmerman, Y., Foidart, J.-M., Coelingh Bennink, H.J., Unique effects on hepatic function, lipid metabolism, bone and growth endocrine parameters of estetrol in combined oral contraceptives. Eur. J. Contracept. Reprod. Health Care 20:6 (2015), 463–475.
[9] Tskitishvili, E., Pequeux, C., Munaut, C., Viellevoye, R., Nisolle, M., Noël, A., Foidart, J.-M., Use of estetrol with other steroids for attenuation of neonatal hypoxic–ischemic brain injury: to combine or not to combine?. Oncotarget, 2016.
[10] Tskitishvili, E., Pequeux, C., Munaut, C., Viellevoye, R., Nisolle, M., Noël, A., Foidart, J.-M., Estrogen receptors and estetrol-dependent neuroprotective actions: a pilot study. J. Endocrinol. 232:1 (2017), 85–95.
[12] Spooner, N., Denniff, P., Michielsen, L., De Vries, R., Ji, Q.C., Arnold, M.E., Woods, K., Woolf, E.J., Xu, Y., Boutet, V., A device for dried blood microsampling in quantitative bioanalysis: overcoming the issues associated blood hematocrit. Bioanalysis 7:6 (2015), 653–659.
[13] Houbart, V., Cobraiville, G., Servais, A.-C., Napp, A., Merville, M.-P., Fillet, M., Hepcidin determination in dried blood by microfluidic LC–MS/MS: comparison of DBS and volumetric absorptive microsampling for matrix effect and recovery. Bioanalysis 7:21 (2015), 2789–2799.
[14] Mano, Y., Kita, K., Kusano, K., Hematocrit-independent recovery is a key for bioanalysis using volumetric absorptive microsampling devices, Mitra™. Bioanalysis 7:15 (2015), 1821–1829.
[15] De Kesel, P.M., Lambert, W.E., Stove, C.P., Does volumetric absorptive microsampling eliminate the hematocrit bias for caffeine and paraxanthine in dried blood samples? A comparative study. Anal. Chim. Acta 881 (2015), 65–73.
[16] Houbart, V., Cobraiville, G., Nys, G., Servais, A.-C., Fillet, M., Volumetric absorptive microsampling for hepcidin peptide extraction from whole blood. LC GC N. Am., 34(5), 2016.
[17] Luo, Y., Korfmacher, W., Ho, S., Shen, L., Wang, J., Wu, Z., Guo, Y., Snow, G., O'Shea, T., Evaluation of two blood microsampling approaches for drug discovery PK studies in rats. Bioanalysis 7:18 (2015), 2345–2359.
[18] Miao, Z., Farnham, J.G., Hanson, G., Podoll, T., Reid, M.J., Bioanalysis of emixustat (ACU-4429) in whole blood collected with volumetric absorptive microsampling by LC–MS/MS. Bioanalysis 7:16 (2015), 2071–2083.
[19] Coelingh Bennink, H.J., Heegaard, A.M., Visser, M., Holinka, C.F., Christiansen, C., Oral bioavailability and bone-sparing effects of estetrol in an osteoporosis model. Climacteric 11:Suppl. 1 (2008), 2–14.
[20] Visser, M., Foidart, J.-M., Coelingh Bennink, H., In vitro effects of estetrol on receptor binding, drug targets and human liver cell metabolism. Climacteric 11:Suppl. 1 (2008), 64–68.
[21] Visser, M., Holinka, C., Coelingh Bennink, H., First human exposure to exogenous single-dose oral estetrol in early postmenopausal women. Climacteric 11:Suppl. 1 (2008), 31–40.
[22] Geisler, J., Berntsen, H., Lønning, P.E., A novel HPLC-RIA method for the simultaneous detection of estrone, estradiol and estrone sulphate levels in breast cancer tissue. J. Steroid Biochem. Mol. Biol. 72:5 (2000), 259–264.
[23] Diaz-Cruz, M.S., Lopez de Alda, M.J., Lopez, R., Barcelo, D., Determination of estrogens and progestogens by mass spectrometric techniques (GC/MS, LC/MS and LC/MS/MS). J. Mass Spectrom. 38:9 (2003), 917–923.
[24] Le Blanc, A.F., Albrecht, C., Bonn, T., Fechner, P., Proll, G., Pröll, F., Carlquist, M., Gauglitz, G., A novel analytical tool for quantification of estrogenicity in river water based on fluorescence labelled estrogen receptor α. Anal. Bioanal. Chem., 395(6), 2009, 1769.
[25] Mao, L., Sun, C., Zhang, H., Li, Y., Wu, D., Determination of environmental estrogens in human urine by high performance liquid chromatography after fluorescent derivatization with p-nitrobenzoyl chloride. Anal. Chim. Acta 522:2 (2004), 241–246.
[26] Stafiej, A., Pyrzynska, K., Regan, F., Determination of anti-inflammatory drugs and estrogens in water by HPLC with UV detection. J. Sep. Sci. 30:7 (2007), 985–991.
[27] Yamashita, K., Okuyama, M., Watanabe, Y., Honma, S., Kobayashi, S., Numazawa, M., Highly sensitive determination of estrone and estradiol in human serum by liquid chromatography–electrospray ionization tandem mass spectrometry. Steroids 72:11–12 (2007), 819–827.
[28] Fan, H., Papouskova, B., Lemr, K., Wigginton, J.G., Schug, K.A., Bulk derivatization and direct injection of human cerebrospinal fluid for trace-level quantification of endogenous estrogens using trap-and-elute liquid chromatography with tandem mass spectrometry. J. Sep. Sci. 37:15 (2014), 2010–2017.
[29] Nguyen, H.P., Li, L., Gatson, J.W., Maass, D., Wigginton, J.G., Simpkins, J.W., Schug, K.A., Simultaneous quantification of four native estrogen hormones at trace levels in human cerebrospinal fluid using liquid chromatography–tandem mass spectrometry. J. Pharm. Biomed. Anal. 54:4 (2011), 830–837.
[30] Yang, W.C., Regnier, F.E., Sliva, D., Adamec, J., Stable isotope-coded quaternization for comparative quantification of estrogen metabolites by high-performance liquid chromatography–electrospray ionization mass spectrometry. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 870:2 (2008), 233–240.
[31] Fiers, T., Casetta, B., Bernaert, B., Vandersypt, E., Debock, M., Kaufman, J.M., Development of a highly sensitive method for the quantification of estrone and estradiol in serum by liquid chromatography tandem mass spectrometry without derivatization. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 893–894 (2012), 57–62.
[32] Guo, T., Gu, J., Soldin, O.P., Singh, R.J., Soldin, S.J., Rapid measurement of estrogens and their metabolites in human serum by liquid chromatography–tandem mass spectrometry without derivatization. Clin. Biochem. 41:9 (2008), 736–741.
[33] Harwood, D.T., Handelsman, D.J., Development and validation of a sensitive liquid chromatography–tandem mass spectrometry assay to simultaneously measure androgens and estrogens in serum without derivatization. Clin. Chim. Acta 409:1–2 (2009), 78–84.
[34] Pauwels, S., Antonio, L., Jans, I., Lintermans, A., Neven, P., Claessens, F., Decallonne, B., Billen, J., Vanderschueren, D., Vermeersch, P., Sensitive routine liquid chromatography–tandem mass spectrometry method for serum estradiol and estrone without derivatization. Anal. Bioanal. Chem. 405:26 (2013), 8569–8577.
[35] Matuszewski, B., Constanzer, M., Chavez-Eng, C., Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC–MS/MS. Anal. Chem. 75:13 (2003), 3019–3030.
[36] Antignac, J.-P., de Wasch, K., Monteau, F., De Brabander, H., Andre, F., Le Bizec, B., The ion suppression phenomenon in liquid chromatography–mass spectrometry and its consequences in the field of residue analysis. Anal. Chim. Acta 529:1–2 (2005), 129–136.
[37] Jessome, L.L., Volmer, D.A., Ion suppression: a major concern in mass spectrometry. LC GC N. Am., 24(5), 2006, 498.
[38] Kostiainen, R., Kauppila, T.J., Effect of eluent on the ionization process in liquid chromatography–mass spectrometry. J. Chromatogr. A 1216:4 (2009), 685–699.
[39] Zhang, X., Clausen, M.R., Zhao, X., Zheng, H., Bertram, H.C., Enhancing the power of liquid chromatography–mass spectrometry-based urine metabolomics in negative ion mode by optimization of the additive. Anal. Chem. 84:18 (2012), 7785–7792.
[40] Pesek, J.J., Matyska, M.T., Ammonium fluoride as a mobile phase additive in aqueous normal phase chromatography. J. Chromatogr. A 1401 (2015), 69–74.
[41] Petrie, B., Youdan, J., Barden, R., Kasprzyk-Hordern, B., Multi-residue analysis of 90 emerging contaminants in liquid and solid environmental matrices by ultra-high-performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A 1431 (2016), 64–78.
[42] Parker, S.L., Guerra Valero, Y.C., Lipman, J., Roberts, J.A., Wallis, S.C., Effect of time on recovery of plasma microsamples for the quantitative determination of vancomycin. Bioanalysis 8:21 (2016), 2235–2242.
[43] Tretzel, L., Thomas, A., Geyer, H., Delahaut, P., Schänzer, W., Thevis, M., Determination of Synacthen® in dried blood spots for doping control analysis using liquid chromatography tandem mass spectrometry. Anal. Bioanal. Chem. 407:16 (2015), 4709–4720.
[44] Guidance for Industry: Bioanalytical Method Validation. 2001, May, US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER) http://www.fda.gov/downloads/Drugs/Guidance/ucm070107.pdf (consulted November 2016).
[45] Guidance for Industry: Bioanalytical Method Validation, DRAFT guidance. 2013, September, US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Veterinary Medicines (CMV) http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm368107.pdf (consulted December 2016).